Gagliardo–Nirenberg inequalities and non-inequalities: The full story
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 5, pp. 1355-1376

Voir la notice de l'article provenant de la source Numdam

We investigate the validity of the Gagliardo–Nirenberg type inequality

fWs,p(Ω)fWs1,p1(Ω)θfWs2,p2(Ω)1θ,
with ΩRN. Here, 0s1ss2 are non negative numbers (not necessarily integers), 1p1,p,p2, and we assume the standard relations
s=θs1+(1θ)s2,1/p=θ/p1+(1θ)/p2 for some θ(0,1).

By the seminal contributions of E. Gagliardo and L. Nirenberg, (1) holds when s1,s2,s are integers. It turns out that (1) holds for “most” of values of s1,,p2, but not for all of them. We present an explicit condition on s1,s2,p1,p2 which allows to decide whether (1) holds or fails.

DOI : 10.1016/j.anihpc.2017.11.007
Keywords: Sobolev spaces, Gagliardo–Nirenberg inequalities, Interpolation inequalities
@article{AIHPC_2018__35_5_1355_0,
     author = {Brezis, Ha{\"\i}m and Mironescu, Petru},
     title = {Gagliardo{\textendash}Nirenberg inequalities and non-inequalities: {The} full story},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1355--1376},
     publisher = {Elsevier},
     volume = {35},
     number = {5},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.11.007},
     mrnumber = {3813967},
     zbl = {1401.46022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.11.007/}
}
TY  - JOUR
AU  - Brezis, Haïm
AU  - Mironescu, Petru
TI  - Gagliardo–Nirenberg inequalities and non-inequalities: The full story
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1355
EP  - 1376
VL  - 35
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.11.007/
DO  - 10.1016/j.anihpc.2017.11.007
LA  - en
ID  - AIHPC_2018__35_5_1355_0
ER  - 
%0 Journal Article
%A Brezis, Haïm
%A Mironescu, Petru
%T Gagliardo–Nirenberg inequalities and non-inequalities: The full story
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1355-1376
%V 35
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.11.007/
%R 10.1016/j.anihpc.2017.11.007
%G en
%F AIHPC_2018__35_5_1355_0
Brezis, Haïm; Mironescu, Petru. Gagliardo–Nirenberg inequalities and non-inequalities: The full story. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 5, pp. 1355-1376. doi: 10.1016/j.anihpc.2017.11.007

Cité par Sources :