Decay rate of iterated integrals of branched rough paths
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 945-969
Voir la notice de l'article provenant de la source Numdam
Iterated integrals of paths arise frequently in the study of the Taylor's expansion for controlled differential equations. We will prove a factorial decay estimate, conjectured by M. Gubinelli, for the iterated integrals of non-geometric rough paths. We will explain, with a counter example, why the conventional approach of using the neoclassical inequality fails. Our proof involves a concavity estimate for sums over rooted trees and a non-trivial extension of T. Lyons' proof in 1994 for the factorial decay of iterated Young's integrals.
DOI :
10.1016/j.anihpc.2017.09.002
Keywords:
Branched rough paths, Non-geometric rough paths, Iterated integrals
@article{AIHPC_2018__35_4_945_0, author = {Boedihardjo, Horatio}, title = {Decay rate of iterated integrals of branched rough paths}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {945--969}, publisher = {Elsevier}, volume = {35}, number = {4}, year = {2018}, doi = {10.1016/j.anihpc.2017.09.002}, mrnumber = {3795022}, zbl = {1391.60122}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.09.002/} }
TY - JOUR AU - Boedihardjo, Horatio TI - Decay rate of iterated integrals of branched rough paths JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 945 EP - 969 VL - 35 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.09.002/ DO - 10.1016/j.anihpc.2017.09.002 LA - en ID - AIHPC_2018__35_4_945_0 ER -
%0 Journal Article %A Boedihardjo, Horatio %T Decay rate of iterated integrals of branched rough paths %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 945-969 %V 35 %N 4 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.09.002/ %R 10.1016/j.anihpc.2017.09.002 %G en %F AIHPC_2018__35_4_945_0
Boedihardjo, Horatio. Decay rate of iterated integrals of branched rough paths. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 945-969. doi: 10.1016/j.anihpc.2017.09.002
Cité par Sources :