Voir la notice de l'article provenant de la source Numdam
We prove statistical limit laws for sequences of Birkhoff sums of the type where is a family of nonuniformly hyperbolic transformations.
The key ingredient is a new martingale–coboundary decomposition for nonuniformly hyperbolic transformations which is useful already in the case when the family is replaced by a fixed transformation T, and which is particularly effective in the case when varies with n.
In addition to uniformly expanding/hyperbolic dynamical systems, our results include cases where the family consists of intermittent maps, unimodal maps (along the Collet–Eckmann parameters), Viana maps, and externally forced dispersing billiards.
As an application, we prove a homogenisation result for discrete fast–slow systems where the fast dynamics is generated by a family of nonuniformly hyperbolic transformations.
@article{AIHPC_2018__35_4_859_0, author = {Korepanov, A. and Kosloff, Z. and Melbourne, I.}, title = {Martingale{\textendash}coboundary decomposition for families of dynamical systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {859--885}, publisher = {Elsevier}, volume = {35}, number = {4}, year = {2018}, doi = {10.1016/j.anihpc.2017.08.005}, mrnumber = {3795019}, zbl = {1406.37027}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.08.005/} }
TY - JOUR AU - Korepanov, A. AU - Kosloff, Z. AU - Melbourne, I. TI - Martingale–coboundary decomposition for families of dynamical systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 859 EP - 885 VL - 35 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.08.005/ DO - 10.1016/j.anihpc.2017.08.005 LA - en ID - AIHPC_2018__35_4_859_0 ER -
%0 Journal Article %A Korepanov, A. %A Kosloff, Z. %A Melbourne, I. %T Martingale–coboundary decomposition for families of dynamical systems %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 859-885 %V 35 %N 4 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.08.005/ %R 10.1016/j.anihpc.2017.08.005 %G en %F AIHPC_2018__35_4_859_0
Korepanov, A.; Kosloff, Z.; Melbourne, I. Martingale–coboundary decomposition for families of dynamical systems. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 859-885. doi: 10.1016/j.anihpc.2017.08.005
Cité par Sources :