Martingale–coboundary decomposition for families of dynamical systems
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 859-885

Voir la notice de l'article provenant de la source Numdam

We prove statistical limit laws for sequences of Birkhoff sums of the type j=0n1vnTnj where Tn is a family of nonuniformly hyperbolic transformations.

The key ingredient is a new martingale–coboundary decomposition for nonuniformly hyperbolic transformations which is useful already in the case when the family Tn is replaced by a fixed transformation T, and which is particularly effective in the case when Tn varies with n.

In addition to uniformly expanding/hyperbolic dynamical systems, our results include cases where the family Tn consists of intermittent maps, unimodal maps (along the Collet–Eckmann parameters), Viana maps, and externally forced dispersing billiards.

As an application, we prove a homogenisation result for discrete fast–slow systems where the fast dynamics is generated by a family of nonuniformly hyperbolic transformations.

DOI : 10.1016/j.anihpc.2017.08.005
Keywords: Martingale–coboundary decomposition, Nonuniform hyperbolicity, Statistical limit laws, Homogenisation, Fast–slow systems
@article{AIHPC_2018__35_4_859_0,
     author = {Korepanov, A. and Kosloff, Z. and Melbourne, I.},
     title = {Martingale{\textendash}coboundary decomposition for families of dynamical systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {859--885},
     publisher = {Elsevier},
     volume = {35},
     number = {4},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.08.005},
     mrnumber = {3795019},
     zbl = {1406.37027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.08.005/}
}
TY  - JOUR
AU  - Korepanov, A.
AU  - Kosloff, Z.
AU  - Melbourne, I.
TI  - Martingale–coboundary decomposition for families of dynamical systems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 859
EP  - 885
VL  - 35
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.08.005/
DO  - 10.1016/j.anihpc.2017.08.005
LA  - en
ID  - AIHPC_2018__35_4_859_0
ER  - 
%0 Journal Article
%A Korepanov, A.
%A Kosloff, Z.
%A Melbourne, I.
%T Martingale–coboundary decomposition for families of dynamical systems
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 859-885
%V 35
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.08.005/
%R 10.1016/j.anihpc.2017.08.005
%G en
%F AIHPC_2018__35_4_859_0
Korepanov, A.; Kosloff, Z.; Melbourne, I. Martingale–coboundary decomposition for families of dynamical systems. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 859-885. doi: 10.1016/j.anihpc.2017.08.005

Cité par Sources :