The Cahn–Hilliard–Hele–Shaw system with singular potential
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 1079-1118

Voir la notice de l'article provenant de la source Numdam

The Cahn–Hilliard–Hele–Shaw system is a fundamental diffuse-interface model for an incompressible binary fluid confined in a Hele–Shaw cell. It consists of a convective Cahn–Hilliard equation in which the velocity u is subject to a Korteweg force through Darcy's equation. In this paper, we aim to investigate the system with a physically relevant potential (i.e., of logarithmic type). This choice ensures that the (relative) concentration difference φ takes values within the admissible range. To the best of our knowledge, essentially all the available contributions in the literature are concerned with a regular approximation of the singular potential. Here we first prove the existence of a global weak solution with finite energy that satisfies an energy dissipative property. Then, in dimension two, we further obtain the uniqueness and regularity of global weak solutions. In particular, we show that any two-dimensional weak solution satisfies the so-called strict separation property, namely, if φ is not a pure state at some initial time, then it stays instantaneously away from the pure states. When the spatial dimension is three, we prove the existence of a unique global strong solution, provided that the initial datum is regular enough and sufficiently close to any local minimizer of the free energy. This also yields the local Lyapunov stability of the local minimizer itself. Finally, we prove that under suitable assumptions any global solution converges to a single equilibrium as time goes to infinity.

DOI : 10.1016/j.anihpc.2017.10.002
Classification : 35B40, 35B41, 35Q35, 76D27
Keywords: Cahn–Hilliard equation, Darcy's equation, Singular potential, Well-posedness, Regularity, Long-time behavior
@article{AIHPC_2018__35_4_1079_0,
     author = {Giorgini, Andrea and Grasselli, Maurizio and Wu, Hao},
     title = {The {Cahn{\textendash}Hilliard{\textendash}Hele{\textendash}Shaw} system with singular potential},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1079--1118},
     publisher = {Elsevier},
     volume = {35},
     number = {4},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.10.002},
     mrnumber = {3795027},
     zbl = {1394.35356},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.10.002/}
}
TY  - JOUR
AU  - Giorgini, Andrea
AU  - Grasselli, Maurizio
AU  - Wu, Hao
TI  - The Cahn–Hilliard–Hele–Shaw system with singular potential
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1079
EP  - 1118
VL  - 35
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.10.002/
DO  - 10.1016/j.anihpc.2017.10.002
LA  - en
ID  - AIHPC_2018__35_4_1079_0
ER  - 
%0 Journal Article
%A Giorgini, Andrea
%A Grasselli, Maurizio
%A Wu, Hao
%T The Cahn–Hilliard–Hele–Shaw system with singular potential
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1079-1118
%V 35
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.10.002/
%R 10.1016/j.anihpc.2017.10.002
%G en
%F AIHPC_2018__35_4_1079_0
Giorgini, Andrea; Grasselli, Maurizio; Wu, Hao. The Cahn–Hilliard–Hele–Shaw system with singular potential. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 1079-1118. doi: 10.1016/j.anihpc.2017.10.002

Cité par Sources :