Spatially discrete reaction–diffusion equations with discontinuous hysteresis
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 1041-1077

Voir la notice de l'article provenant de la source Numdam

We address the question: Why may reaction–diffusion equations with hysteretic nonlinearities become ill-posed and how to amend this? To do so, we discretize the spatial variable and obtain a lattice dynamical system with a hysteretic nonlinearity. We analyze a new mechanism that leads to appearance of a spatio-temporal pattern called rattling: the solution exhibits a propagation phenomenon different from the classical traveling wave, while the hysteretic nonlinearity, loosely speaking, takes a different value at every second spatial point, independently of the grid size. Such a dynamics indicates how one should redefine hysteresis to make the continuous problem well-posed and how the solution will then behave. In the present paper, we develop main tools for the analysis of the spatially discrete model and apply them to a prototype case. In particular, we prove that the propagation velocity is of order at1/2 as t and explicitly find the rate a.

DOI : 10.1016/j.anihpc.2017.09.006
Keywords: Hysteresis, Pattern formation, Reaction–diffusion equations, Rattling, Spatial discretisation, Lattice dynamics
@article{AIHPC_2018__35_4_1041_0,
     author = {Gurevich, Pavel and Tikhomirov, Sergey},
     title = {Spatially discrete reaction{\textendash}diffusion equations with discontinuous hysteresis},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1041--1077},
     publisher = {Elsevier},
     volume = {35},
     number = {4},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.09.006},
     mrnumber = {3795026},
     zbl = {1391.34026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.09.006/}
}
TY  - JOUR
AU  - Gurevich, Pavel
AU  - Tikhomirov, Sergey
TI  - Spatially discrete reaction–diffusion equations with discontinuous hysteresis
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1041
EP  - 1077
VL  - 35
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.09.006/
DO  - 10.1016/j.anihpc.2017.09.006
LA  - en
ID  - AIHPC_2018__35_4_1041_0
ER  - 
%0 Journal Article
%A Gurevich, Pavel
%A Tikhomirov, Sergey
%T Spatially discrete reaction–diffusion equations with discontinuous hysteresis
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1041-1077
%V 35
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.09.006/
%R 10.1016/j.anihpc.2017.09.006
%G en
%F AIHPC_2018__35_4_1041_0
Gurevich, Pavel; Tikhomirov, Sergey. Spatially discrete reaction–diffusion equations with discontinuous hysteresis. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 1041-1077. doi: 10.1016/j.anihpc.2017.09.006

Cité par Sources :