Existence and qualitative theory for stratified solitary water waves
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 517-576

Voir la notice de l'article provenant de la source Numdam

This paper considers two-dimensional gravity solitary waves moving through a body of density stratified water lying below vacuum. The fluid domain is assumed to lie above an impenetrable flat ocean bed, while the interface between the water and vacuum is a free boundary where the pressure is constant. We prove that, for any smooth choice of upstream velocity field and density function, there exists a continuous curve of such solutions that includes large-amplitude surface waves. Furthermore, following this solution curve, one encounters waves that come arbitrarily close to possessing points of horizontal stagnation.

We also provide a number of results characterizing the qualitative features of solitary stratified waves. In part, these include bounds on the wave speed from above and below, some of which are new even for constant density flow; an a priori bound on the velocity field and lower bound on the pressure; a proof of the nonexistence of monotone bores in this physical regime; and a theorem ensuring that all supercritical solitary waves of elevation have an axis of even symmetry.

DOI : 10.1016/j.anihpc.2017.06.003
Keywords: Water waves, Stratified solitary waves, Free boundary problems, Global bifurcation
@article{AIHPC_2018__35_2_517_0,
     author = {Chen, Robin Ming and Walsh, Samuel and Wheeler, Miles H.},
     title = {Existence and qualitative theory for stratified solitary water waves},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {517--576},
     publisher = {Elsevier},
     volume = {35},
     number = {2},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.06.003},
     mrnumber = {3765551},
     zbl = {1408.35135},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.06.003/}
}
TY  - JOUR
AU  - Chen, Robin Ming
AU  - Walsh, Samuel
AU  - Wheeler, Miles H.
TI  - Existence and qualitative theory for stratified solitary water waves
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 517
EP  - 576
VL  - 35
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.06.003/
DO  - 10.1016/j.anihpc.2017.06.003
LA  - en
ID  - AIHPC_2018__35_2_517_0
ER  - 
%0 Journal Article
%A Chen, Robin Ming
%A Walsh, Samuel
%A Wheeler, Miles H.
%T Existence and qualitative theory for stratified solitary water waves
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 517-576
%V 35
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.06.003/
%R 10.1016/j.anihpc.2017.06.003
%G en
%F AIHPC_2018__35_2_517_0
Chen, Robin Ming; Walsh, Samuel; Wheeler, Miles H. Existence and qualitative theory for stratified solitary water waves. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 517-576. doi: 10.1016/j.anihpc.2017.06.003

Cité par Sources :