Doubly nonlocal Cahn–Hilliard equations
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 357-392
Voir la notice de l'article provenant de la source Numdam
We consider a doubly nonlocal nonlinear parabolic equation which describes phase-segregation of a two-component material in a bounded domain. This model is a more general version than the recent nonlocal Cahn–Hilliard equation proposed by Giacomin and Lebowitz [26], such that it reduces to the latter under certain conditions. We establish well-posedness results along with regularity and long-time results in the case when the interaction between the two levels of nonlocality is strong-to-weak.
DOI :
10.1016/j.anihpc.2017.05.001
Classification :
35R09, 37L30, 82C24
Keywords: Nonlocal Cahn–Hilliard, phase transition, solutions, doubly nonlocal equation, anomalous transport, fractional Laplace
Keywords: Nonlocal Cahn–Hilliard, phase transition, solutions, doubly nonlocal equation, anomalous transport, fractional Laplace
@article{AIHPC_2018__35_2_357_0,
author = {Gal, Ciprian G.},
title = {Doubly nonlocal {Cahn{\textendash}Hilliard} equations},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {357--392},
publisher = {Elsevier},
volume = {35},
number = {2},
year = {2018},
doi = {10.1016/j.anihpc.2017.05.001},
mrnumber = {3765546},
zbl = {1387.35595},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.05.001/}
}
TY - JOUR AU - Gal, Ciprian G. TI - Doubly nonlocal Cahn–Hilliard equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 357 EP - 392 VL - 35 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.05.001/ DO - 10.1016/j.anihpc.2017.05.001 LA - en ID - AIHPC_2018__35_2_357_0 ER -
Gal, Ciprian G. Doubly nonlocal Cahn–Hilliard equations. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 357-392. doi: 10.1016/j.anihpc.2017.05.001
Cité par Sources :