Doubly nonlocal Cahn–Hilliard equations
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 357-392

Voir la notice de l'article provenant de la source Numdam

We consider a doubly nonlocal nonlinear parabolic equation which describes phase-segregation of a two-component material in a bounded domain. This model is a more general version than the recent nonlocal Cahn–Hilliard equation proposed by Giacomin and Lebowitz [26], such that it reduces to the latter under certain conditions. We establish well-posedness results along with regularity and long-time results in the case when the interaction between the two levels of nonlocality is strong-to-weak.

DOI : 10.1016/j.anihpc.2017.05.001
Classification : 35R09, 37L30, 82C24
Keywords: Nonlocal Cahn–Hilliard, phase transition, solutions, doubly nonlocal equation, anomalous transport, fractional Laplace
@article{AIHPC_2018__35_2_357_0,
     author = {Gal, Ciprian G.},
     title = {Doubly nonlocal {Cahn{\textendash}Hilliard} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {357--392},
     publisher = {Elsevier},
     volume = {35},
     number = {2},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.05.001},
     mrnumber = {3765546},
     zbl = {1387.35595},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.05.001/}
}
TY  - JOUR
AU  - Gal, Ciprian G.
TI  - Doubly nonlocal Cahn–Hilliard equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 357
EP  - 392
VL  - 35
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.05.001/
DO  - 10.1016/j.anihpc.2017.05.001
LA  - en
ID  - AIHPC_2018__35_2_357_0
ER  - 
%0 Journal Article
%A Gal, Ciprian G.
%T Doubly nonlocal Cahn–Hilliard equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 357-392
%V 35
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.05.001/
%R 10.1016/j.anihpc.2017.05.001
%G en
%F AIHPC_2018__35_2_357_0
Gal, Ciprian G. Doubly nonlocal Cahn–Hilliard equations. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 357-392. doi: 10.1016/j.anihpc.2017.05.001

Cité par Sources :