Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg–de Vries equation
    
    
  
  
  
      
      
      
        
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 283-326
    
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Numdam
In this article, we prove the existence of a non-scattering solution, which is minimal in some sense, to the mass-subcritical generalized Korteweg–de Vries (gKdV) equation in the scale critical space where . We construct this solution by a concentration compactness argument. Then, key ingredients are a linear profile decomposition result adopted to -framework and approximation of solutions to the gKdV equation which involves rapid linear oscillation by means of solutions to the nonlinear Schrödinger equation.
                
                  
                  
                    
                    
                  
                    
                  
                
                
                
                
                  
  
    
      DOI : 
        
          10.1016/j.anihpc.2017.04.003
        
        
    
  
                
                
                
                
                   
                      
                  
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
              
              
                  
                    
                    
                      
   Classification : 
35Q53, 35B40, 35B30
Keywords: Generalized Korteweg–de Vries equation, Scattering problem, Threshold solution
                    
                    
                    
                  
                
                
                Keywords: Generalized Korteweg–de Vries equation, Scattering problem, Threshold solution
@article{AIHPC_2018__35_2_283_0,
     author = {Masaki, Satoshi and Segata, Jun-ichi},
     title = {Existence of a minimal non-scattering solution to the mass-subcritical generalized {Korteweg{\textendash}de} {Vries} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {283--326},
     publisher = {Elsevier},
     volume = {35},
     number = {2},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.04.003},
     mrnumber = {3765544},
     zbl = {1383.35196},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.04.003/}
}
                      
                      
                    TY - JOUR AU - Masaki, Satoshi AU - Segata, Jun-ichi TI - Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg–de Vries equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 283 EP - 326 VL - 35 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.04.003/ DO - 10.1016/j.anihpc.2017.04.003 LA - en ID - AIHPC_2018__35_2_283_0 ER -
%0 Journal Article %A Masaki, Satoshi %A Segata, Jun-ichi %T Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg–de Vries equation %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 283-326 %V 35 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.04.003/ %R 10.1016/j.anihpc.2017.04.003 %G en %F AIHPC_2018__35_2_283_0
Masaki, Satoshi; Segata, Jun-ichi. Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg–de Vries equation. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 283-326. doi: 10.1016/j.anihpc.2017.04.003
Cité par Sources :
