On Lipschitz solutions for some forward–backward parabolic equations
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 65-100

Voir la notice de l'article provenant de la source Numdam

We investigate the existence and properties of Lipschitz solutions for some forward–backward parabolic equations in all dimensions. Our main approach to existence is motivated by reformulating such equations into partial differential inclusions and relies on a Baire's category method. In this way, the existence of infinitely many Lipschitz solutions to certain initial-boundary value problem of those equations is guaranteed under a pivotal density condition. Under this framework, we study two important cases of forward–backward anisotropic diffusion in which the density condition can be realized and therefore the existence results follow together with micro-oscillatory behavior of solutions. The first case is a generalization of the Perona–Malik model in image processing and the other that of Höllig's model related to the Clausius–Duhem inequality in the second law of thermodynamics.

DOI : 10.1016/j.anihpc.2017.03.001
Classification : 35M13, 35K20, 35D30, 49K20
Keywords: Forward–backward parabolic equations, Partial differential inclusions, Convex integration, Baire's category method, Infinitely many Lipschitz solutions
@article{AIHPC_2018__35_1_65_0,
     author = {Kim, Seonghak and Yan, Baisheng},
     title = {On {Lipschitz} solutions for some forward{\textendash}backward parabolic equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {65--100},
     publisher = {Elsevier},
     volume = {35},
     number = {1},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.03.001},
     mrnumber = {3739928},
     zbl = {1378.35153},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.03.001/}
}
TY  - JOUR
AU  - Kim, Seonghak
AU  - Yan, Baisheng
TI  - On Lipschitz solutions for some forward–backward parabolic equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 65
EP  - 100
VL  - 35
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.03.001/
DO  - 10.1016/j.anihpc.2017.03.001
LA  - en
ID  - AIHPC_2018__35_1_65_0
ER  - 
%0 Journal Article
%A Kim, Seonghak
%A Yan, Baisheng
%T On Lipschitz solutions for some forward–backward parabolic equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 65-100
%V 35
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.03.001/
%R 10.1016/j.anihpc.2017.03.001
%G en
%F AIHPC_2018__35_1_65_0
Kim, Seonghak; Yan, Baisheng. On Lipschitz solutions for some forward–backward parabolic equations. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 65-100. doi: 10.1016/j.anihpc.2017.03.001

Cité par Sources :