On the wellposedness of the KdV/KdV2 equations and their frequency maps
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 101-160

Voir la notice de l'article provenant de la source Numdam

In form of a case study for the KdV and the KdV2 equations, we present a novel approach of representing the frequencies of integrable PDEs which allows to extend them analytically to spaces of low regularity and to study their asymptotics. Applications include convexity properties of the Hamiltonians and wellposedness results in spaces of low regularity. In particular, it is proved that on Hs the KdV2 equation is C0-wellposed if s0 and illposed (in a strong sense) if s<0.

DOI : 10.1016/j.anihpc.2017.03.003
Classification : 37K10, 35Q53, 35D05
Keywords: KdV equation, KdV2 equation, Frequency map, Well-posedness, Ill-posedness, Convexity properties of Hamiltonians of integrable PDEs
@article{AIHPC_2018__35_1_101_0,
     author = {Kappeler, Thomas and Molnar, Jan-Cornelius},
     title = {On the wellposedness of the {KdV/KdV2} equations and their frequency maps},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {101--160},
     publisher = {Elsevier},
     volume = {35},
     number = {1},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.03.003},
     mrnumber = {3739929},
     zbl = {1406.37050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.03.003/}
}
TY  - JOUR
AU  - Kappeler, Thomas
AU  - Molnar, Jan-Cornelius
TI  - On the wellposedness of the KdV/KdV2 equations and their frequency maps
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 101
EP  - 160
VL  - 35
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.03.003/
DO  - 10.1016/j.anihpc.2017.03.003
LA  - en
ID  - AIHPC_2018__35_1_101_0
ER  - 
%0 Journal Article
%A Kappeler, Thomas
%A Molnar, Jan-Cornelius
%T On the wellposedness of the KdV/KdV2 equations and their frequency maps
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 101-160
%V 35
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.03.003/
%R 10.1016/j.anihpc.2017.03.003
%G en
%F AIHPC_2018__35_1_101_0
Kappeler, Thomas; Molnar, Jan-Cornelius. On the wellposedness of the KdV/KdV2 equations and their frequency maps. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 101-160. doi: 10.1016/j.anihpc.2017.03.003

Cité par Sources :