On the wellposedness of the KdV/KdV2 equations and their frequency maps
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 101-160
Voir la notice de l'article provenant de la source Numdam
In form of a case study for the KdV and the KdV2 equations, we present a novel approach of representing the frequencies of integrable PDEs which allows to extend them analytically to spaces of low regularity and to study their asymptotics. Applications include convexity properties of the Hamiltonians and wellposedness results in spaces of low regularity. In particular, it is proved that on the KdV2 equation is -wellposed if and illposed (in a strong sense) if .
DOI :
10.1016/j.anihpc.2017.03.003
Classification :
37K10, 35Q53, 35D05
Keywords: KdV equation, KdV2 equation, Frequency map, Well-posedness, Ill-posedness, Convexity properties of Hamiltonians of integrable PDEs
Keywords: KdV equation, KdV2 equation, Frequency map, Well-posedness, Ill-posedness, Convexity properties of Hamiltonians of integrable PDEs
@article{AIHPC_2018__35_1_101_0,
author = {Kappeler, Thomas and Molnar, Jan-Cornelius},
title = {On the wellposedness of the {KdV/KdV2} equations and their frequency maps},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {101--160},
publisher = {Elsevier},
volume = {35},
number = {1},
year = {2018},
doi = {10.1016/j.anihpc.2017.03.003},
mrnumber = {3739929},
zbl = {1406.37050},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.03.003/}
}
TY - JOUR AU - Kappeler, Thomas AU - Molnar, Jan-Cornelius TI - On the wellposedness of the KdV/KdV2 equations and their frequency maps JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 101 EP - 160 VL - 35 IS - 1 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.03.003/ DO - 10.1016/j.anihpc.2017.03.003 LA - en ID - AIHPC_2018__35_1_101_0 ER -
%0 Journal Article %A Kappeler, Thomas %A Molnar, Jan-Cornelius %T On the wellposedness of the KdV/KdV2 equations and their frequency maps %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 101-160 %V 35 %N 1 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.03.003/ %R 10.1016/j.anihpc.2017.03.003 %G en %F AIHPC_2018__35_1_101_0
Kappeler, Thomas; Molnar, Jan-Cornelius. On the wellposedness of the KdV/KdV2 equations and their frequency maps. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 101-160. doi: 10.1016/j.anihpc.2017.03.003
Cité par Sources :
