Voir la notice de l'article provenant de la source Numdam
We show the existence of a global weak solution of the heat flow for Dirac-harmonic maps from compact Riemann surfaces with boundary when the energy of the initial map and the -norm of the boundary values of the spinor are sufficiently small. Dirac-harmonic maps couple a second order harmonic map type system with a first-order Dirac type system. The heat flow that has been introduced in [9] and that we investigate here is novel insofar as we only make the second order part parabolic, but carry the first order part along the resulting flow as an elliptic constraint. Of course, since the equations are coupled, both parts then change along the flow.
The solution is unique and regular with the exception of at most finitely many singular times. We also discuss the behavior at the singularities of the flow.
As an application, we deduce some existence results for Dirac-harmonic maps. Since we may impose nontrivial boundary conditions also for the spinor part, in the limit, we shall obtain Dirac-harmonic maps with nontrivial spinor part.
Keywords: Dirac-harmonic map, Dirac-harmonic flow, Blow-up, Dirichlet boundary, Chiral boundary, Singularity
@article{AIHPC_2017__34_7_1851_0, author = {Jost, J\"urgen and Liu, Lei and Zhu, Miaomiao}, title = {A global weak solution of the {Dirac-harmonic} map flow}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1851--1882}, publisher = {Elsevier}, volume = {34}, number = {7}, year = {2017}, doi = {10.1016/j.anihpc.2017.01.002}, mrnumber = {3724759}, zbl = {1380.53068}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.01.002/} }
TY - JOUR AU - Jost, Jürgen AU - Liu, Lei AU - Zhu, Miaomiao TI - A global weak solution of the Dirac-harmonic map flow JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1851 EP - 1882 VL - 34 IS - 7 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.01.002/ DO - 10.1016/j.anihpc.2017.01.002 LA - en ID - AIHPC_2017__34_7_1851_0 ER -
%0 Journal Article %A Jost, Jürgen %A Liu, Lei %A Zhu, Miaomiao %T A global weak solution of the Dirac-harmonic map flow %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1851-1882 %V 34 %N 7 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.01.002/ %R 10.1016/j.anihpc.2017.01.002 %G en %F AIHPC_2017__34_7_1851_0
Jost, Jürgen; Liu, Lei; Zhu, Miaomiao. A global weak solution of the Dirac-harmonic map flow. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1851-1882. doi: 10.1016/j.anihpc.2017.01.002
Cité par Sources :