Regularity estimates for quasilinear elliptic equations with variable growth involving measure data
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1639-1667

Voir la notice de l'article provenant de la source Numdam

We investigate a quasilinear elliptic equation with variable growth in a bounded nonsmooth domain involving a signed Radon measure. We obtain an optimal global Calderón–Zygmund type estimate for such a measure data problem, by proving that the gradient of a very weak solution to the problem is as globally integrable as the first order maximal function of the associated measure, up to a correct power, under minimal regularity requirements on the nonlinearity, the variable exponent and the boundary of the domain.

DOI : 10.1016/j.anihpc.2016.12.002
Classification : 35J92, 46F30, 42B37
Keywords: Nonlinear elliptic equation, Measure data, Variable exponent, Calderón–Zygmund type estimate, Reifenberg flat domain
@article{AIHPC_2017__34_7_1639_0,
     author = {Byun, Sun-Sig and Ok, Jihoon and Park, Jung-Tae},
     title = {Regularity estimates for quasilinear elliptic equations with variable growth involving measure data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1639--1667},
     publisher = {Elsevier},
     volume = {34},
     number = {7},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.12.002},
     zbl = {1374.35183},
     mrnumber = {3724751},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.002/}
}
TY  - JOUR
AU  - Byun, Sun-Sig
AU  - Ok, Jihoon
AU  - Park, Jung-Tae
TI  - Regularity estimates for quasilinear elliptic equations with variable growth involving measure data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1639
EP  - 1667
VL  - 34
IS  - 7
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.002/
DO  - 10.1016/j.anihpc.2016.12.002
LA  - en
ID  - AIHPC_2017__34_7_1639_0
ER  - 
%0 Journal Article
%A Byun, Sun-Sig
%A Ok, Jihoon
%A Park, Jung-Tae
%T Regularity estimates for quasilinear elliptic equations with variable growth involving measure data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1639-1667
%V 34
%N 7
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.12.002/
%R 10.1016/j.anihpc.2016.12.002
%G en
%F AIHPC_2017__34_7_1639_0
Byun, Sun-Sig; Ok, Jihoon; Park, Jung-Tae. Regularity estimates for quasilinear elliptic equations with variable growth involving measure data. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 7, pp. 1639-1667. doi: 10.1016/j.anihpc.2016.12.002

Cité par Sources :