Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1273-1297

Voir la notice de l'article provenant de la source Numdam

We consider the quadratic derivative nonlinear Schrödinger equation (dNLS) on the circle. In particular, we develop an infinite iteration scheme of normal form reductions for dNLS. By combining this normal form procedure with the Cole–Hopf transformation, we prove unconditional global well-posedness in L2(T), and more generally in certain Fourier–Lebesgue spaces FLs,p(T), under the mean-zero and smallness assumptions. As a byproduct, we construct an infinite sequence of quantities that are invariant under the dynamics. We also show the necessity of the smallness assumption by explicitly constructing a finite time blowup solution with non-small mean-zero initial data.

DOI : 10.1016/j.anihpc.2016.10.003
Classification : 35Q55
Keywords: Quadratic derivative nonlinear Schrödinger equation, Normal form, Cole–Hopf transform, Fourier–Lebesgue space, Well-posedness, Finite time blowup
@article{AIHPC_2017__34_5_1273_0,
     author = {Chung, Jaywan and Guo, Zihua and Kwon, Soonsik and Oh, Tadahiro},
     title = {Normal form approach to global well-posedness of the quadratic derivative nonlinear {Schr\"odinger} equation on the circle},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1273--1297},
     publisher = {Elsevier},
     volume = {34},
     number = {5},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.10.003},
     mrnumber = {3742524},
     zbl = {1386.35376},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.003/}
}
TY  - JOUR
AU  - Chung, Jaywan
AU  - Guo, Zihua
AU  - Kwon, Soonsik
AU  - Oh, Tadahiro
TI  - Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1273
EP  - 1297
VL  - 34
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.003/
DO  - 10.1016/j.anihpc.2016.10.003
LA  - en
ID  - AIHPC_2017__34_5_1273_0
ER  - 
%0 Journal Article
%A Chung, Jaywan
%A Guo, Zihua
%A Kwon, Soonsik
%A Oh, Tadahiro
%T Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1273-1297
%V 34
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.003/
%R 10.1016/j.anihpc.2016.10.003
%G en
%F AIHPC_2017__34_5_1273_0
Chung, Jaywan; Guo, Zihua; Kwon, Soonsik; Oh, Tadahiro. Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1273-1297. doi: 10.1016/j.anihpc.2016.10.003

Cité par Sources :