Voir la notice de l'article provenant de la source Numdam
We consider the quadratic derivative nonlinear Schrödinger equation (dNLS) on the circle. In particular, we develop an infinite iteration scheme of normal form reductions for dNLS. By combining this normal form procedure with the Cole–Hopf transformation, we prove unconditional global well-posedness in , and more generally in certain Fourier–Lebesgue spaces , under the mean-zero and smallness assumptions. As a byproduct, we construct an infinite sequence of quantities that are invariant under the dynamics. We also show the necessity of the smallness assumption by explicitly constructing a finite time blowup solution with non-small mean-zero initial data.
Keywords: Quadratic derivative nonlinear Schrödinger equation, Normal form, Cole–Hopf transform, Fourier–Lebesgue space, Well-posedness, Finite time blowup
@article{AIHPC_2017__34_5_1273_0,
author = {Chung, Jaywan and Guo, Zihua and Kwon, Soonsik and Oh, Tadahiro},
title = {Normal form approach to global well-posedness of the quadratic derivative nonlinear {Schr\"odinger} equation on the circle},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {1273--1297},
publisher = {Elsevier},
volume = {34},
number = {5},
year = {2017},
doi = {10.1016/j.anihpc.2016.10.003},
mrnumber = {3742524},
zbl = {1386.35376},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.003/}
}
TY - JOUR AU - Chung, Jaywan AU - Guo, Zihua AU - Kwon, Soonsik AU - Oh, Tadahiro TI - Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1273 EP - 1297 VL - 34 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.003/ DO - 10.1016/j.anihpc.2016.10.003 LA - en ID - AIHPC_2017__34_5_1273_0 ER -
%0 Journal Article %A Chung, Jaywan %A Guo, Zihua %A Kwon, Soonsik %A Oh, Tadahiro %T Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1273-1297 %V 34 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.003/ %R 10.1016/j.anihpc.2016.10.003 %G en %F AIHPC_2017__34_5_1273_0
Chung, Jaywan; Guo, Zihua; Kwon, Soonsik; Oh, Tadahiro. Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1273-1297. doi: 10.1016/j.anihpc.2016.10.003
Cité par Sources :
