Small amplitude periodic solutions of Klein–Gordon equations
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1255-1272

Voir la notice de l'article provenant de la source Numdam

We consider a class of nonlinear Klein–Gordon equations utt=uxxu+f(u) and obtain a family of small amplitude periodic solutions, where the temporal and spatial period have different scales. The proof is based on a combination of Lyapunov–Schmidt reduction, averaging and Nash–Moser iteration.

DOI : 10.1016/j.anihpc.2016.10.002
Keywords: Klein–Gordon equation, Periodic solution, Nash–Moser iteration
@article{AIHPC_2017__34_5_1255_0,
     author = {Lu, Nan},
     title = {Small amplitude periodic solutions of {Klein{\textendash}Gordon} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1255--1272},
     publisher = {Elsevier},
     volume = {34},
     number = {5},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.10.002},
     mrnumber = {3742523},
     zbl = {1388.35006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.002/}
}
TY  - JOUR
AU  - Lu, Nan
TI  - Small amplitude periodic solutions of Klein–Gordon equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1255
EP  - 1272
VL  - 34
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.002/
DO  - 10.1016/j.anihpc.2016.10.002
LA  - en
ID  - AIHPC_2017__34_5_1255_0
ER  - 
%0 Journal Article
%A Lu, Nan
%T Small amplitude periodic solutions of Klein–Gordon equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1255-1272
%V 34
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.002/
%R 10.1016/j.anihpc.2016.10.002
%G en
%F AIHPC_2017__34_5_1255_0
Lu, Nan. Small amplitude periodic solutions of Klein–Gordon equations. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1255-1272. doi: 10.1016/j.anihpc.2016.10.002

Cité par Sources :