Small amplitude periodic solutions of Klein–Gordon equations
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1255-1272
Voir la notice de l'article provenant de la source Numdam
We consider a class of nonlinear Klein–Gordon equations and obtain a family of small amplitude periodic solutions, where the temporal and spatial period have different scales. The proof is based on a combination of Lyapunov–Schmidt reduction, averaging and Nash–Moser iteration.
DOI :
10.1016/j.anihpc.2016.10.002
Keywords:
Klein–Gordon equation, Periodic solution, Nash–Moser iteration
@article{AIHPC_2017__34_5_1255_0,
author = {Lu, Nan},
title = {Small amplitude periodic solutions of {Klein{\textendash}Gordon} equations},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {1255--1272},
publisher = {Elsevier},
volume = {34},
number = {5},
year = {2017},
doi = {10.1016/j.anihpc.2016.10.002},
mrnumber = {3742523},
zbl = {1388.35006},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.002/}
}
TY - JOUR AU - Lu, Nan TI - Small amplitude periodic solutions of Klein–Gordon equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 1255 EP - 1272 VL - 34 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.002/ DO - 10.1016/j.anihpc.2016.10.002 LA - en ID - AIHPC_2017__34_5_1255_0 ER -
%0 Journal Article %A Lu, Nan %T Small amplitude periodic solutions of Klein–Gordon equations %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 1255-1272 %V 34 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.10.002/ %R 10.1016/j.anihpc.2016.10.002 %G en %F AIHPC_2017__34_5_1255_0
Lu, Nan. Small amplitude periodic solutions of Klein–Gordon equations. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1255-1272. doi: 10.1016/j.anihpc.2016.10.002
Cité par Sources :