Unique determination of a time-dependent potential for wave equations from partial data
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 973-990

Voir la notice de l'article provenant de la source Numdam

We consider the inverse problem of determining a time-dependent potential q, appearing in the wave equation t2uΔxu+q(t,x)u=0 in Q=(0,T)×Ω with T>0 and Ω a C2 bounded domain of Rn, n2, from partial observations of the solutions on ∂Q. More precisely, we look for observations on ∂Q that allows to recover uniquely a general time-dependent potential q without involving an important set of data. We prove global unique determination of qL(Q) from partial observations on ∂Q. Besides being nonlinear, this problem is related to the inverse problem of determining a semilinear term appearing in a nonlinear hyperbolic equation from boundary measurements.

DOI : 10.1016/j.anihpc.2016.07.003
Classification : 35R30, 35L05
Keywords: Inverse problems, Wave equation, Time-dependent potential, Uniqueness, Carleman estimates, Partial data
@article{AIHPC_2017__34_4_973_0,
     author = {Kian, Yavar},
     title = {Unique determination of a time-dependent potential for wave equations from partial data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {973--990},
     publisher = {Elsevier},
     volume = {34},
     number = {4},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.07.003},
     mrnumber = {3661867},
     zbl = {1435.35416},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.07.003/}
}
TY  - JOUR
AU  - Kian, Yavar
TI  - Unique determination of a time-dependent potential for wave equations from partial data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 973
EP  - 990
VL  - 34
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.07.003/
DO  - 10.1016/j.anihpc.2016.07.003
LA  - en
ID  - AIHPC_2017__34_4_973_0
ER  - 
%0 Journal Article
%A Kian, Yavar
%T Unique determination of a time-dependent potential for wave equations from partial data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 973-990
%V 34
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.07.003/
%R 10.1016/j.anihpc.2016.07.003
%G en
%F AIHPC_2017__34_4_973_0
Kian, Yavar. Unique determination of a time-dependent potential for wave equations from partial data. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 973-990. doi: 10.1016/j.anihpc.2016.07.003

Cité par Sources :