Integrability of the Brouwer degree for irregular arguments
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 933-959

Voir la notice de l'article provenant de la source Numdam

We prove that the Brouwer degree deg(u,U,) for a function uC0,α(U;Rn) is in Lp(Rn) if 1p<nαd, where URn is open and bounded and d is the box dimension of ∂U. This is supplemented by a theorem showing that uju in C0,α(U;Rn) implies deg(uj,U,)deg(u,U,) in Lp(Rn) for the parameter regime 1p<nαd, while there exist convergent sequences uju in C0,α(U;Rn) such that deg(uj,U,)Lp for the opposite regime p>nαd.

DOI : 10.1016/j.anihpc.2016.07.002
Classification : 26B10, 55M25
Keywords: Brouwer degree, Distributional Jacobian determinant, Hölder functions
@article{AIHPC_2017__34_4_933_0,
     author = {Olbermann, Heiner},
     title = {Integrability of the {Brouwer} degree for irregular arguments},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {933--959},
     publisher = {Elsevier},
     volume = {34},
     number = {4},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.07.002},
     mrnumber = {3661865},
     zbl = {1366.26018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.07.002/}
}
TY  - JOUR
AU  - Olbermann, Heiner
TI  - Integrability of the Brouwer degree for irregular arguments
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 933
EP  - 959
VL  - 34
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.07.002/
DO  - 10.1016/j.anihpc.2016.07.002
LA  - en
ID  - AIHPC_2017__34_4_933_0
ER  - 
%0 Journal Article
%A Olbermann, Heiner
%T Integrability of the Brouwer degree for irregular arguments
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 933-959
%V 34
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.07.002/
%R 10.1016/j.anihpc.2016.07.002
%G en
%F AIHPC_2017__34_4_933_0
Olbermann, Heiner. Integrability of the Brouwer degree for irregular arguments. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 933-959. doi: 10.1016/j.anihpc.2016.07.002

Cité par Sources :