Voir la notice de l'article provenant de la source Numdam
This article deals with the variable coefficient thin obstacle problem in dimensions. We address the regular free boundary regularity, the behavior of the solution close to the free boundary and the optimal regularity of the solution in a low regularity set-up.
We first discuss the case of zero obstacle and metrics with . In this framework, we prove the regularity of the regular free boundary and derive the leading order asymptotic expansion of solutions at regular free boundary points. We further show the optimal regularity of solutions. New ingredients include the use of the Reifenberg flatness of the regular free boundary, the construction of an (almost) optimal barrier function and the introduction of an appropriate splitting of the solution. Important insights depend on the consideration of various intrinsic geometric structures.
Based on variations of the arguments in [18] and the present article, we then also discuss the case of non-zero and interior thin obstacles. We obtain the optimal regularity of the solutions and the regularity of the regular free boundary for metrics and obstacles with .
Keywords: Variable coefficient Signorini problem, Variable coefficient thin obstacle problem, Thin free boundary
@article{AIHPC_2017__34_4_845_0,
author = {Koch, Herbert and R\"uland, Angkana and Shi, Wenhui},
title = {The variable coefficient thin obstacle problem: {Optimal} regularity and regularity of the regular free boundary},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {845--897},
publisher = {Elsevier},
volume = {34},
number = {4},
year = {2017},
doi = {10.1016/j.anihpc.2016.08.001},
mrnumber = {3661863},
zbl = {1435.35421},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.08.001/}
}
TY - JOUR AU - Koch, Herbert AU - Rüland, Angkana AU - Shi, Wenhui TI - The variable coefficient thin obstacle problem: Optimal regularity and regularity of the regular free boundary JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 845 EP - 897 VL - 34 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.08.001/ DO - 10.1016/j.anihpc.2016.08.001 LA - en ID - AIHPC_2017__34_4_845_0 ER -
%0 Journal Article %A Koch, Herbert %A Rüland, Angkana %A Shi, Wenhui %T The variable coefficient thin obstacle problem: Optimal regularity and regularity of the regular free boundary %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 845-897 %V 34 %N 4 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.08.001/ %R 10.1016/j.anihpc.2016.08.001 %G en %F AIHPC_2017__34_4_845_0
Koch, Herbert; Rüland, Angkana; Shi, Wenhui. The variable coefficient thin obstacle problem: Optimal regularity and regularity of the regular free boundary. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 845-897. doi: 10.1016/j.anihpc.2016.08.001
Cité par Sources :
