The variable coefficient thin obstacle problem: Optimal regularity and regularity of the regular free boundary
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 845-897

Voir la notice de l'article provenant de la source Numdam

This article deals with the variable coefficient thin obstacle problem in n+1 dimensions. We address the regular free boundary regularity, the behavior of the solution close to the free boundary and the optimal regularity of the solution in a low regularity set-up.

We first discuss the case of zero obstacle and W1,p metrics with p(n+1,]. In this framework, we prove the C1,α regularity of the regular free boundary and derive the leading order asymptotic expansion of solutions at regular free boundary points. We further show the optimal C1,min{1n+1p,12} regularity of solutions. New ingredients include the use of the Reifenberg flatness of the regular free boundary, the construction of an (almost) optimal barrier function and the introduction of an appropriate splitting of the solution. Important insights depend on the consideration of various intrinsic geometric structures.

Based on variations of the arguments in [18] and the present article, we then also discuss the case of non-zero and interior thin obstacles. We obtain the optimal regularity of the solutions and the regularity of the regular free boundary for W1,p metrics and W2,p obstacles with p(2(n+1),].

DOI : 10.1016/j.anihpc.2016.08.001
Classification : 35R35
Keywords: Variable coefficient Signorini problem, Variable coefficient thin obstacle problem, Thin free boundary
@article{AIHPC_2017__34_4_845_0,
     author = {Koch, Herbert and R\"uland, Angkana and Shi, Wenhui},
     title = {The variable coefficient thin obstacle problem: {Optimal} regularity and regularity of the regular free boundary},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {845--897},
     publisher = {Elsevier},
     volume = {34},
     number = {4},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.08.001},
     mrnumber = {3661863},
     zbl = {1435.35421},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.08.001/}
}
TY  - JOUR
AU  - Koch, Herbert
AU  - Rüland, Angkana
AU  - Shi, Wenhui
TI  - The variable coefficient thin obstacle problem: Optimal regularity and regularity of the regular free boundary
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 845
EP  - 897
VL  - 34
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.08.001/
DO  - 10.1016/j.anihpc.2016.08.001
LA  - en
ID  - AIHPC_2017__34_4_845_0
ER  - 
%0 Journal Article
%A Koch, Herbert
%A Rüland, Angkana
%A Shi, Wenhui
%T The variable coefficient thin obstacle problem: Optimal regularity and regularity of the regular free boundary
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 845-897
%V 34
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.08.001/
%R 10.1016/j.anihpc.2016.08.001
%G en
%F AIHPC_2017__34_4_845_0
Koch, Herbert; Rüland, Angkana; Shi, Wenhui. The variable coefficient thin obstacle problem: Optimal regularity and regularity of the regular free boundary. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 845-897. doi: 10.1016/j.anihpc.2016.08.001

Cité par Sources :