Convex billiards on convex spheres
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 793-816
Voir la notice de l'article provenant de la source Numdam
In this paper we study the dynamical billiards on a convex 2D sphere. We investigate some generic properties of the convex billiards on a general convex sphere. We prove that generically, every periodic point is either hyperbolic or elliptic with irrational rotation number. Moreover, every hyperbolic periodic point admits some transverse homoclinic intersections. A new ingredient in our approach is Herman's result on Diophantine invariant curves that we use to prove the nonlinear stability of elliptic periodic points for a dense subset of convex billiards.
DOI :
10.1016/j.anihpc.2016.07.001
Classification :
37D40, 37D50, 37C20, 37E40
Keywords: Convex billiards, Generic properties, Homoclinic intersections, Diophantine number, Nonlinearly stable
Keywords: Convex billiards, Generic properties, Homoclinic intersections, Diophantine number, Nonlinearly stable
@article{AIHPC_2017__34_4_793_0, author = {Zhang, Pengfei}, title = {Convex billiards on convex spheres}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {793--816}, publisher = {Elsevier}, volume = {34}, number = {4}, year = {2017}, doi = {10.1016/j.anihpc.2016.07.001}, mrnumber = {3661861}, zbl = {1377.37058}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.07.001/} }
TY - JOUR AU - Zhang, Pengfei TI - Convex billiards on convex spheres JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 793 EP - 816 VL - 34 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.07.001/ DO - 10.1016/j.anihpc.2016.07.001 LA - en ID - AIHPC_2017__34_4_793_0 ER -
Zhang, Pengfei. Convex billiards on convex spheres. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 793-816. doi: 10.1016/j.anihpc.2016.07.001
Cité par Sources :