Convex billiards on convex spheres
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 793-816

Voir la notice de l'article provenant de la source Numdam

In this paper we study the dynamical billiards on a convex 2D sphere. We investigate some generic properties of the convex billiards on a general convex sphere. We prove that C generically, every periodic point is either hyperbolic or elliptic with irrational rotation number. Moreover, every hyperbolic periodic point admits some transverse homoclinic intersections. A new ingredient in our approach is Herman's result on Diophantine invariant curves that we use to prove the nonlinear stability of elliptic periodic points for a dense subset of convex billiards.

DOI : 10.1016/j.anihpc.2016.07.001
Classification : 37D40, 37D50, 37C20, 37E40
Keywords: Convex billiards, Generic properties, Homoclinic intersections, Diophantine number, Nonlinearly stable
@article{AIHPC_2017__34_4_793_0,
     author = {Zhang, Pengfei},
     title = {Convex billiards on convex spheres},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {793--816},
     publisher = {Elsevier},
     volume = {34},
     number = {4},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.07.001},
     mrnumber = {3661861},
     zbl = {1377.37058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.07.001/}
}
TY  - JOUR
AU  - Zhang, Pengfei
TI  - Convex billiards on convex spheres
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 793
EP  - 816
VL  - 34
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.07.001/
DO  - 10.1016/j.anihpc.2016.07.001
LA  - en
ID  - AIHPC_2017__34_4_793_0
ER  - 
%0 Journal Article
%A Zhang, Pengfei
%T Convex billiards on convex spheres
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 793-816
%V 34
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.07.001/
%R 10.1016/j.anihpc.2016.07.001
%G en
%F AIHPC_2017__34_4_793_0
Zhang, Pengfei. Convex billiards on convex spheres. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 4, pp. 793-816. doi: 10.1016/j.anihpc.2016.07.001

Cité par Sources :