A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 469-482
Voir la notice de l'article provenant de la source Numdam
We consider entire solutions to in , where is a nonlocal operator with translation invariant, even and compactly supported kernel K. Under different assumptions on the operator , we show that monotone solutions are necessarily one-dimensional. The proof is based on a Liouville type approach. A variational characterization of the stability notion is also given, extending our results in some cases to stable solutions.
DOI :
10.1016/j.anihpc.2016.01.001
Classification :
45A05, 47G10, 47B34, 35R11
Keywords: Integral operators, Convolution kernels, Nonlocal equations, Stable solutions, One-dimensional symmetry, De Giorgi Conjecture
Keywords: Integral operators, Convolution kernels, Nonlocal equations, Stable solutions, One-dimensional symmetry, De Giorgi Conjecture
@article{AIHPC_2017__34_2_469_0, author = {Hamel, Fran\c{c}ois and Ros-Oton, Xavier and Sire, Yannick and Valdinoci, Enrico}, title = {A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {469--482}, publisher = {Elsevier}, volume = {34}, number = {2}, year = {2017}, doi = {10.1016/j.anihpc.2016.01.001}, mrnumber = {3610941}, zbl = {1358.45004}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.01.001/} }
TY - JOUR AU - Hamel, François AU - Ros-Oton, Xavier AU - Sire, Yannick AU - Valdinoci, Enrico TI - A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 469 EP - 482 VL - 34 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.01.001/ DO - 10.1016/j.anihpc.2016.01.001 LA - en ID - AIHPC_2017__34_2_469_0 ER -
%0 Journal Article %A Hamel, François %A Ros-Oton, Xavier %A Sire, Yannick %A Valdinoci, Enrico %T A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 469-482 %V 34 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.01.001/ %R 10.1016/j.anihpc.2016.01.001 %G en %F AIHPC_2017__34_2_469_0
Hamel, François; Ros-Oton, Xavier; Sire, Yannick; Valdinoci, Enrico. A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 469-482. doi: 10.1016/j.anihpc.2016.01.001
Cité par Sources :