A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 469-482

Voir la notice de l'article provenant de la source Numdam

We consider entire solutions to Lu=f(u) in R2, where L is a nonlocal operator with translation invariant, even and compactly supported kernel K. Under different assumptions on the operator L, we show that monotone solutions are necessarily one-dimensional. The proof is based on a Liouville type approach. A variational characterization of the stability notion is also given, extending our results in some cases to stable solutions.

DOI : 10.1016/j.anihpc.2016.01.001
Classification : 45A05, 47G10, 47B34, 35R11
Keywords: Integral operators, Convolution kernels, Nonlocal equations, Stable solutions, One-dimensional symmetry, De Giorgi Conjecture
@article{AIHPC_2017__34_2_469_0,
     author = {Hamel, Fran\c{c}ois and Ros-Oton, Xavier and Sire, Yannick and Valdinoci, Enrico},
     title = {A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {469--482},
     publisher = {Elsevier},
     volume = {34},
     number = {2},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.01.001},
     mrnumber = {3610941},
     zbl = {1358.45004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.01.001/}
}
TY  - JOUR
AU  - Hamel, François
AU  - Ros-Oton, Xavier
AU  - Sire, Yannick
AU  - Valdinoci, Enrico
TI  - A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 469
EP  - 482
VL  - 34
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.01.001/
DO  - 10.1016/j.anihpc.2016.01.001
LA  - en
ID  - AIHPC_2017__34_2_469_0
ER  - 
%0 Journal Article
%A Hamel, François
%A Ros-Oton, Xavier
%A Sire, Yannick
%A Valdinoci, Enrico
%T A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 469-482
%V 34
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2016.01.001/
%R 10.1016/j.anihpc.2016.01.001
%G en
%F AIHPC_2017__34_2_469_0
Hamel, François; Ros-Oton, Xavier; Sire, Yannick; Valdinoci, Enrico. A one-dimensional symmetry result for a class of nonlocal semilinear equations in the plane. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 469-482. doi: 10.1016/j.anihpc.2016.01.001

Cité par Sources :