The obstacle problem with singular coefficients near Dirichlet data
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 293-334

Voir la notice de l'article provenant de la source Numdam

In this paper we study the behaviour of the free boundary close to its contact points with the fixed boundary B{x1=0} in the obstacle type problem

{div(x1au)=χ{u>0}inB+,u=0onB{x1=0}
where a<1, B+=B{x1>0}, B is the unit ball in Rn and n2 is an integer.

Let Γ=B+{u>0} be the free boundary and assume that the origin is a contact point, i.e. 0Γ. We prove that the free boundary touches the fixed boundary uniformly tangentially at the origin, near to the origin it is the graph of a C1 function and there is a uniform modulus of continuity for the derivatives of this function.

DOI : 10.1016/j.anihpc.2015.12.003
Classification : 35R35, 35J60
Keywords: Free boundary, Obstacle problem, Singular coefficient, Regularity of free boundaries
@article{AIHPC_2017__34_2_293_0,
     author = {Shahgholian, Henrik and Yeressian, Karen},
     title = {The obstacle problem with singular coefficients near {Dirichlet} data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {293--334},
     publisher = {Elsevier},
     volume = {34},
     number = {2},
     year = {2017},
     doi = {10.1016/j.anihpc.2015.12.003},
     mrnumber = {3610934},
     zbl = {1515.35369},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.12.003/}
}
TY  - JOUR
AU  - Shahgholian, Henrik
AU  - Yeressian, Karen
TI  - The obstacle problem with singular coefficients near Dirichlet data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 293
EP  - 334
VL  - 34
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.12.003/
DO  - 10.1016/j.anihpc.2015.12.003
LA  - en
ID  - AIHPC_2017__34_2_293_0
ER  - 
%0 Journal Article
%A Shahgholian, Henrik
%A Yeressian, Karen
%T The obstacle problem with singular coefficients near Dirichlet data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 293-334
%V 34
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.12.003/
%R 10.1016/j.anihpc.2015.12.003
%G en
%F AIHPC_2017__34_2_293_0
Shahgholian, Henrik; Yeressian, Karen. The obstacle problem with singular coefficients near Dirichlet data. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 293-334. doi: 10.1016/j.anihpc.2015.12.003

Cité par Sources :