Voir la notice de l'article provenant de la source Numdam
Let Ω be a bounded smooth domain in . We study positive solutions of equation (E) in Ω where , , and . A positive solution of (E) is moderate if it is dominated by an -harmonic function. If (the Hardy constant for Ω) every positive -harmonic function can be represented in terms of a finite measure on ∂Ω via the Martin representation theorem. However the classical measure boundary trace of any such solution is zero. We introduce a notion of normalized boundary trace by which we obtain a complete classification of the positive moderate solutions of (E) in the subcritical case, . (The critical value depends only on N and μ.) For there exists no moderate solution with an isolated singularity on the boundary. The normalized boundary trace and associated boundary value problems are also discussed in detail for the linear operator . These results form the basis for the study of the nonlinear problem.
Keywords: Hardy potential, Martin kernel, Moderate solutions, Normalized boundary trace, Critical exponent, Removable singularities
@article{AIHPC_2017__34_1_69_0,
author = {Marcus, Moshe and Nguyen, Phuoc-Tai},
title = {Moderate solutions of semilinear elliptic equations with {Hardy} potential},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {69--88},
publisher = {Elsevier},
volume = {34},
number = {1},
year = {2017},
doi = {10.1016/j.anihpc.2015.10.001},
mrnumber = {3592679},
zbl = {1356.35114},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.10.001/}
}
TY - JOUR AU - Marcus, Moshe AU - Nguyen, Phuoc-Tai TI - Moderate solutions of semilinear elliptic equations with Hardy potential JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 69 EP - 88 VL - 34 IS - 1 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.10.001/ DO - 10.1016/j.anihpc.2015.10.001 LA - en ID - AIHPC_2017__34_1_69_0 ER -
%0 Journal Article %A Marcus, Moshe %A Nguyen, Phuoc-Tai %T Moderate solutions of semilinear elliptic equations with Hardy potential %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 69-88 %V 34 %N 1 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.10.001/ %R 10.1016/j.anihpc.2015.10.001 %G en %F AIHPC_2017__34_1_69_0
Marcus, Moshe; Nguyen, Phuoc-Tai. Moderate solutions of semilinear elliptic equations with Hardy potential. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 69-88. doi: 10.1016/j.anihpc.2015.10.001
Cité par Sources :
