Moderate solutions of semilinear elliptic equations with Hardy potential
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 69-88

Voir la notice de l'article provenant de la source Numdam

Let Ω be a bounded smooth domain in RN. We study positive solutions of equation (E) Lμu+uq=0 in Ω where Lμ=Δ+μδ2, 0<μ, q>1 and δ(x)=dist(x,Ω). A positive solution of (E) is moderate if it is dominated by an Lμ-harmonic function. If μ<CH(Ω) (the Hardy constant for Ω) every positive Lμ-harmonic function can be represented in terms of a finite measure on ∂Ω via the Martin representation theorem. However the classical measure boundary trace of any such solution is zero. We introduce a notion of normalized boundary trace by which we obtain a complete classification of the positive moderate solutions of (E) in the subcritical case, 1<q<qμ,c. (The critical value depends only on N and μ.) For qqμ,c there exists no moderate solution with an isolated singularity on the boundary. The normalized boundary trace and associated boundary value problems are also discussed in detail for the linear operator Lμ. These results form the basis for the study of the nonlinear problem.

DOI : 10.1016/j.anihpc.2015.10.001
Classification : 35J60, 35J75, 35J10
Keywords: Hardy potential, Martin kernel, Moderate solutions, Normalized boundary trace, Critical exponent, Removable singularities
@article{AIHPC_2017__34_1_69_0,
     author = {Marcus, Moshe and Nguyen, Phuoc-Tai},
     title = {Moderate solutions of semilinear elliptic equations with {Hardy} potential},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {69--88},
     publisher = {Elsevier},
     volume = {34},
     number = {1},
     year = {2017},
     doi = {10.1016/j.anihpc.2015.10.001},
     mrnumber = {3592679},
     zbl = {1356.35114},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.10.001/}
}
TY  - JOUR
AU  - Marcus, Moshe
AU  - Nguyen, Phuoc-Tai
TI  - Moderate solutions of semilinear elliptic equations with Hardy potential
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 69
EP  - 88
VL  - 34
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.10.001/
DO  - 10.1016/j.anihpc.2015.10.001
LA  - en
ID  - AIHPC_2017__34_1_69_0
ER  - 
%0 Journal Article
%A Marcus, Moshe
%A Nguyen, Phuoc-Tai
%T Moderate solutions of semilinear elliptic equations with Hardy potential
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 69-88
%V 34
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.10.001/
%R 10.1016/j.anihpc.2015.10.001
%G en
%F AIHPC_2017__34_1_69_0
Marcus, Moshe; Nguyen, Phuoc-Tai. Moderate solutions of semilinear elliptic equations with Hardy potential. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 69-88. doi: 10.1016/j.anihpc.2015.10.001

Cité par Sources :