Analysis of degenerate cross-diffusion population models with volume filling
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 1-29

Voir la notice de l'article provenant de la source Numdam

A class of parabolic cross-diffusion systems modeling the interaction of an arbitrary number of population species is analyzed in a bounded domain with no-flux boundary conditions. The equations are formally derived from a random-walk lattice model in the diffusion limit. Compared to previous results in the literature, the novelty is the combination of general degenerate diffusion and volume-filling effects. Conditions on the nonlinear diffusion coefficients are identified, which yield a formal gradient-flow or entropy structure. This structure allows for the proof of global-in-time existence of bounded weak solutions and the exponential convergence of the solutions to the constant steady state. The existence proof is based on an approximation argument, the entropy inequality, and new nonlinear Aubin–Lions compactness lemmas. The proof of the large-time behavior employs the entropy estimate and convex Sobolev inequalities. Moreover, under simplifying assumptions on the nonlinearities, the uniqueness of weak solutions is shown by using the H1 method, the E-monotonicity technique of Gajewski, and the subadditivity of the Fisher information.

DOI : 10.1016/j.anihpc.2015.08.003
Keywords: Cross diffusion, Population dynamics, Gradient-flow structure, Entropy variables, Nonlinear Aubin–Lions lemmas
@article{AIHPC_2017__34_1_1_0,
     author = {Zamponi, Nicola and J\"ungel, Ansgar},
     title = {Analysis of degenerate cross-diffusion population models with volume filling},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1--29},
     publisher = {Elsevier},
     volume = {34},
     number = {1},
     year = {2017},
     doi = {10.1016/j.anihpc.2015.08.003},
     mrnumber = {3592676},
     zbl = {1386.35167},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.08.003/}
}
TY  - JOUR
AU  - Zamponi, Nicola
AU  - Jüngel, Ansgar
TI  - Analysis of degenerate cross-diffusion population models with volume filling
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1
EP  - 29
VL  - 34
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.08.003/
DO  - 10.1016/j.anihpc.2015.08.003
LA  - en
ID  - AIHPC_2017__34_1_1_0
ER  - 
%0 Journal Article
%A Zamponi, Nicola
%A Jüngel, Ansgar
%T Analysis of degenerate cross-diffusion population models with volume filling
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1-29
%V 34
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.08.003/
%R 10.1016/j.anihpc.2015.08.003
%G en
%F AIHPC_2017__34_1_1_0
Zamponi, Nicola; Jüngel, Ansgar. Analysis of degenerate cross-diffusion population models with volume filling. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 1-29. doi: 10.1016/j.anihpc.2015.08.003

Cité par Sources :