Finite time blowup for the parabolic–parabolic Keller–Segel system with critical diffusion
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 197-220

Voir la notice de l'article provenant de la source Numdam

The present paper is concerned with the parabolic–parabolic Keller–Segel system

tu=div(uq+1uv),t>0,xΩ,tv=Δvαv+u,t>0,xΩ,(u,v)(0)=(u0,v0)0,xΩ,
with degenerate critical diffusion q=q:=(N2)/N in space dimension N3, the underlying domain Ω being either Ω=RN or the open ball Ω=BR(0) of RN with suitable boundary conditions. It has remained open whether there exist solutions blowing up in finite time, the existence of such solutions being known for the parabolic–elliptic reduction with the second equation replaced by 0=Δvαv+u. Assuming that N=3,4 and α>0, we prove that radially symmetric solutions with negative initial energy blow up in finite time in Ω=RN and in Ω=BR(0) under mixed Neumann–Dirichlet boundary conditions. Moreover, if Ω=BR(0) and Neumann boundary conditions are imposed on both u and v, we show the existence of a positive constant C depending only on N, Ω, and the mass of u0 such that radially symmetric solutions blow up in finite time if the initial energy does not exceed −C. The criterion for finite time blowup is satisfied by a large class of initial data.

DOI : 10.1016/j.anihpc.2015.11.002
Classification : 35B44, 35B33, 35K15, 35K65, 35Q92
Keywords: Blowup, Radial symmetry, Nonlinear diffusion, Parabolic–parabolic Keller–Segel system
@article{AIHPC_2017__34_1_197_0,
     author = {Lauren\c{c}ot, Philippe and Mizoguchi, Noriko},
     title = {Finite time blowup for the parabolic{\textendash}parabolic {Keller{\textendash}Segel} system with critical diffusion},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {197--220},
     publisher = {Elsevier},
     volume = {34},
     number = {1},
     year = {2017},
     doi = {10.1016/j.anihpc.2015.11.002},
     mrnumber = {3592684},
     zbl = {1357.35060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.11.002/}
}
TY  - JOUR
AU  - Laurençot, Philippe
AU  - Mizoguchi, Noriko
TI  - Finite time blowup for the parabolic–parabolic Keller–Segel system with critical diffusion
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 197
EP  - 220
VL  - 34
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.11.002/
DO  - 10.1016/j.anihpc.2015.11.002
LA  - en
ID  - AIHPC_2017__34_1_197_0
ER  - 
%0 Journal Article
%A Laurençot, Philippe
%A Mizoguchi, Noriko
%T Finite time blowup for the parabolic–parabolic Keller–Segel system with critical diffusion
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 197-220
%V 34
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.11.002/
%R 10.1016/j.anihpc.2015.11.002
%G en
%F AIHPC_2017__34_1_197_0
Laurençot, Philippe; Mizoguchi, Noriko. Finite time blowup for the parabolic–parabolic Keller–Segel system with critical diffusion. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 197-220. doi: 10.1016/j.anihpc.2015.11.002

Cité par Sources :