L 2-contraction for shock waves of scalar viscous conservation laws
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 139-156

Voir la notice de l'article provenant de la source Numdam

We consider the L2-contraction up to a shift for viscous shocks of scalar viscous conservation laws with strictly convex fluxes in one space dimension. In the case of a flux which is a small perturbation of the quadratic Burgers flux, we show that any viscous shock induces a contraction in L2, up to a shift. That is, the L2 norm of the difference of any solution of the viscous conservation law, with an appropriate shift of the shock wave, does not increase in time. If, in addition, the difference between the initial value of the solution and the shock wave is also bounded in L1, the L2 norm of the difference converges at the optimal rate t1/4. Both results do not involve any smallness condition on the initial value, nor on the size of the shock. In this context of small perturbations of the quadratic Burgers flux, the result improves the Choi and Vasseur's result in [7]. However, we show that the L2-contraction up to a shift does not hold for every convex flux. We construct a smooth strictly convex flux, for which the L2-contraction does not hold any more even along any Lipschitz shift.

DOI : 10.1016/j.anihpc.2015.10.004
Classification : 35L65, 35L67, 35B35, 35B40
Keywords: Viscous conservation laws, Shock wave, Stability, Contraction, Relative entropy
@article{AIHPC_2017__34_1_139_0,
     author = {Kang, Moon-Jin and Vasseur, Alexis F.},
     title = {\protect\emph{L}         \protect\textsuperscript{2}-contraction for shock waves of scalar viscous conservation laws},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {139--156},
     publisher = {Elsevier},
     volume = {34},
     number = {1},
     year = {2017},
     doi = {10.1016/j.anihpc.2015.10.004},
     mrnumber = {3592682},
     zbl = {1368.35183},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.10.004/}
}
TY  - JOUR
AU  - Kang, Moon-Jin
AU  - Vasseur, Alexis F.
TI  - L         2-contraction for shock waves of scalar viscous conservation laws
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 139
EP  - 156
VL  - 34
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.10.004/
DO  - 10.1016/j.anihpc.2015.10.004
LA  - en
ID  - AIHPC_2017__34_1_139_0
ER  - 
%0 Journal Article
%A Kang, Moon-Jin
%A Vasseur, Alexis F.
%T L         2-contraction for shock waves of scalar viscous conservation laws
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 139-156
%V 34
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.10.004/
%R 10.1016/j.anihpc.2015.10.004
%G en
%F AIHPC_2017__34_1_139_0
Kang, Moon-Jin; Vasseur, Alexis F. L         2-contraction for shock waves of scalar viscous conservation laws. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 139-156. doi: 10.1016/j.anihpc.2015.10.004

Cité par Sources :