Everywhere differentiability of viscosity solutions to a class of Aronsson's equations
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 119-138

Voir la notice de l'article provenant de la source Numdam

We show the everywhere differentiability of viscosity solutions to a class of Aronsson equations in Rn for n2, where the coefficient matrices A are assumed to be uniformly elliptic and C1,1. Our result extends an earlier important theorem by Evans and Smart [18] who have studied the case A=In which correspond to the ∞-Laplace equation. We also show that every point is a Lebesgue point for the gradient.

In the process of proving the results we improve some of the gradient estimates obtained for the infinity harmonic functions. The lack of suitable gradient estimates has been a major obstacle for solving the C1,α problem in this setting, and we aim to take a step towards better understanding of this problem, too.

A key tool in our approach is to study the problem in a suitable intrinsic geometry induced by the coefficient matrix A. Heuristically, this corresponds to considering the question on a Riemannian manifold whose the metric is given by the matrix A.

DOI : 10.1016/j.anihpc.2015.10.003
Keywords: $ {L}^{\infty }$-variational problem, Absolute minimizer, Everywhere differentiability, Aronsson's equation
@article{AIHPC_2017__34_1_119_0,
     author = {Siljander, Juhana and Wang, Changyou and Zhou, Yuan},
     title = {Everywhere differentiability of viscosity solutions to a class of {Aronsson's} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {119--138},
     publisher = {Elsevier},
     volume = {34},
     number = {1},
     year = {2017},
     doi = {10.1016/j.anihpc.2015.10.003},
     mrnumber = {3592681},
     zbl = {1368.35056},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.10.003/}
}
TY  - JOUR
AU  - Siljander, Juhana
AU  - Wang, Changyou
AU  - Zhou, Yuan
TI  - Everywhere differentiability of viscosity solutions to a class of Aronsson's equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 119
EP  - 138
VL  - 34
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.10.003/
DO  - 10.1016/j.anihpc.2015.10.003
LA  - en
ID  - AIHPC_2017__34_1_119_0
ER  - 
%0 Journal Article
%A Siljander, Juhana
%A Wang, Changyou
%A Zhou, Yuan
%T Everywhere differentiability of viscosity solutions to a class of Aronsson's equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 119-138
%V 34
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.10.003/
%R 10.1016/j.anihpc.2015.10.003
%G en
%F AIHPC_2017__34_1_119_0
Siljander, Juhana; Wang, Changyou; Zhou, Yuan. Everywhere differentiability of viscosity solutions to a class of Aronsson's equations. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 119-138. doi: 10.1016/j.anihpc.2015.10.003

Cité par Sources :