KAM for autonomous quasi-linear perturbations of KdV
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 6, pp. 1589-1638

Voir la notice de l'article provenant de la source Numdam

We prove the existence and the stability of Cantor families of quasi-periodic, small amplitude solutions of quasi-linear (i.e. strongly nonlinear) autonomous Hamiltonian differentiable perturbations of KdV. This is the first result that extends KAM theory to quasi-linear autonomous and parameter independent PDEs. The core of the proof is to find an approximate inverse of the linearized operators at each approximate solution and to prove that it satisfies tame estimates in Sobolev spaces. A symplectic decoupling procedure reduces the problem to the one of inverting the linearized operator restricted to the normal directions. For this aim we use pseudo-differential operator techniques to transform such linear PDE into an equation with constant coefficients up to smoothing remainders. Then a linear KAM reducibility technique completely diagonalizes such operator. We introduce the “initial conditions” as parameters by performing a “weak” Birkhoff normal form analysis, which is well adapted for quasi-linear perturbations.

DOI : 10.1016/j.anihpc.2015.07.003
Classification : 37K55, 35Q53
Keywords: KdV, KAM for PDEs, Quasi-linear PDEs, Nash–Moser theory, Quasi-periodic solutions
@article{AIHPC_2016__33_6_1589_0,
     author = {Baldi, Pietro and Berti, Massimiliano and Montalto, Riccardo},
     title = {KAM for autonomous quasi-linear perturbations of {KdV}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1589--1638},
     publisher = {Elsevier},
     volume = {33},
     number = {6},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.07.003},
     mrnumber = {3569244},
     zbl = {1370.37134},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.07.003/}
}
TY  - JOUR
AU  - Baldi, Pietro
AU  - Berti, Massimiliano
AU  - Montalto, Riccardo
TI  - KAM for autonomous quasi-linear perturbations of KdV
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1589
EP  - 1638
VL  - 33
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.07.003/
DO  - 10.1016/j.anihpc.2015.07.003
LA  - en
ID  - AIHPC_2016__33_6_1589_0
ER  - 
%0 Journal Article
%A Baldi, Pietro
%A Berti, Massimiliano
%A Montalto, Riccardo
%T KAM for autonomous quasi-linear perturbations of KdV
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1589-1638
%V 33
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.07.003/
%R 10.1016/j.anihpc.2015.07.003
%G en
%F AIHPC_2016__33_6_1589_0
Baldi, Pietro; Berti, Massimiliano; Montalto, Riccardo. KAM for autonomous quasi-linear perturbations of KdV. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 6, pp. 1589-1638. doi: 10.1016/j.anihpc.2015.07.003

Cité par Sources :