A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 6, pp. 1519-1538

Voir la notice de l'article provenant de la source Numdam

We consider the scalar semilinear heat equation utΔu=f(u), where f:[0,)[0,) is continuous and non-decreasing but need not be convex. We completely characterise those functions f for which the equation has a local solution bounded in Lq(Ω) for all non-negative initial data u0Lq(Ω), when ΩRd is a bounded domain with Dirichlet boundary conditions. For q(1,) this holds if and only if limsupss(1+2q/d)f(s)<; and for q=1 if and only if 1s(1+2/d)F(s)ds<, where F(s)=sup1tsf(t)/t. This shows for the first time that the model nonlinearity f(u)=u1+2q/d is truly the ‘boundary case’ when q(1,), but that this is not true for q=1.

The same characterisations hold for the equation posed on the whole space Rd provided that limsups0f(s)/s<.

DOI : 10.1016/j.anihpc.2015.06.005
Keywords: Semilinear heat equation, Dirichlet problem, Local existence, Non-existence, Instantaneous blow-up, Dirichlet heat kernel
@article{AIHPC_2016__33_6_1519_0,
     author = {Laister, R. and Robinson, J.C. and Sier\.z\k{e}ga, M. and Vidal-L\'opez, A.},
     title = {A complete characterisation of local existence for semilinear heat equations in {Lebesgue} spaces},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1519--1538},
     publisher = {Elsevier},
     volume = {33},
     number = {6},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.06.005},
     zbl = {1349.35169},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.06.005/}
}
TY  - JOUR
AU  - Laister, R.
AU  - Robinson, J.C.
AU  - Sierżęga, M.
AU  - Vidal-López, A.
TI  - A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1519
EP  - 1538
VL  - 33
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.06.005/
DO  - 10.1016/j.anihpc.2015.06.005
LA  - en
ID  - AIHPC_2016__33_6_1519_0
ER  - 
%0 Journal Article
%A Laister, R.
%A Robinson, J.C.
%A Sierżęga, M.
%A Vidal-López, A.
%T A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1519-1538
%V 33
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.06.005/
%R 10.1016/j.anihpc.2015.06.005
%G en
%F AIHPC_2016__33_6_1519_0
Laister, R.; Robinson, J.C.; Sierżęga, M.; Vidal-López, A. A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 6, pp. 1519-1538. doi: 10.1016/j.anihpc.2015.06.005

Cité par Sources :