Optimal magnetic Sobolev constants in the semiclassical limit
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 5, pp. 1199-1222

Voir la notice de l'article provenant de la source Numdam

This paper is devoted to the semiclassical analysis of the best constants in the magnetic Sobolev embeddings in the case of a bounded domain of the plane carrying Dirichlet conditions. We provide quantitative estimates of these constants (with an explicit dependence on the semiclassical parameter) and analyze the exponential localization in L-norm of the corresponding minimizers near the magnetic wells.

DOI : 10.1016/j.anihpc.2015.03.008
Keywords: Nonlinear Schrödinger equation, Semiclassical, Magnetic
@article{AIHPC_2016__33_5_1199_0,
     author = {Fournais, S. and Raymond, N.},
     title = {Optimal magnetic {Sobolev} constants in the semiclassical limit},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1199--1222},
     publisher = {Elsevier},
     volume = {33},
     number = {5},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.03.008},
     mrnumber = {3542611},
     zbl = {1350.35006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.03.008/}
}
TY  - JOUR
AU  - Fournais, S.
AU  - Raymond, N.
TI  - Optimal magnetic Sobolev constants in the semiclassical limit
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1199
EP  - 1222
VL  - 33
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.03.008/
DO  - 10.1016/j.anihpc.2015.03.008
LA  - en
ID  - AIHPC_2016__33_5_1199_0
ER  - 
%0 Journal Article
%A Fournais, S.
%A Raymond, N.
%T Optimal magnetic Sobolev constants in the semiclassical limit
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1199-1222
%V 33
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.03.008/
%R 10.1016/j.anihpc.2015.03.008
%G en
%F AIHPC_2016__33_5_1199_0
Fournais, S.; Raymond, N. Optimal magnetic Sobolev constants in the semiclassical limit. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 5, pp. 1199-1222. doi: 10.1016/j.anihpc.2015.03.008

Cité par Sources :