An improvement on the Brézis–Gallouët technique for 2D NLS and 1D half-wave equation
    
    
  
  
  
      
      
      
        
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 4, pp. 1069-1079
    
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Numdam
We revise the classical approach by Brézis–Gallouët to prove global well-posedness for nonlinear evolution equations. In particular we prove global well-posedness for the quartic NLS on general domains Ω in with initial data in , and for the quartic nonlinear half-wave equation on with initial data in .
                
                  
                  
                    
                    
                  
                    
                  
                
                
                
                
                  
  
    
      DOI : 
        
          10.1016/j.anihpc.2015.03.004
        
        
    
  
                
                
                
                
                   
                      
                  
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
              
              
                  
                    
                    
                    
                        
Keywords: 
Half-wave equation, Nonlinear Schrödinger equation, Energy estimates, Global existence
                    
                    
                    
                  
                
                
                @article{AIHPC_2016__33_4_1069_0,
     author = {Ozawa, Tohru and Visciglia, Nicola},
     title = {An improvement on the {Br\'ezis{\textendash}Gallou\"et} technique for {2D} {NLS} and {1D} half-wave equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1069--1079},
     publisher = {Elsevier},
     volume = {33},
     number = {4},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.03.004},
     mrnumber = {3519532},
     zbl = {1351.35188},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.03.004/}
}
                      
                      
                    TY - JOUR AU - Ozawa, Tohru AU - Visciglia, Nicola TI - An improvement on the Brézis–Gallouët technique for 2D NLS and 1D half-wave equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 1069 EP - 1079 VL - 33 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.03.004/ DO - 10.1016/j.anihpc.2015.03.004 LA - en ID - AIHPC_2016__33_4_1069_0 ER -
%0 Journal Article %A Ozawa, Tohru %A Visciglia, Nicola %T An improvement on the Brézis–Gallouët technique for 2D NLS and 1D half-wave equation %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 1069-1079 %V 33 %N 4 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.03.004/ %R 10.1016/j.anihpc.2015.03.004 %G en %F AIHPC_2016__33_4_1069_0
Ozawa, Tohru; Visciglia, Nicola. An improvement on the Brézis–Gallouët technique for 2D NLS and 1D half-wave equation. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 4, pp. 1069-1079. doi: 10.1016/j.anihpc.2015.03.004
Cité par Sources :
    