Fractional elliptic equations, Caccioppoli estimates and regularity
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 3, pp. 767-807

Voir la notice de l'article provenant de la source Numdam

Let L=divx(A(x)x) be a uniformly elliptic operator in divergence form in a bounded domain Ω. We consider the fractional nonlocal equations

{Lsu=f,in Ω,u=0,on Ω,and{Lsu=f,in Ω,Au=0,on Ω.
Here Ls, 0<s<1, is the fractional power of L and Au is the conormal derivative of u with respect to the coefficients A(x). We reproduce Caccioppoli type estimates that allow us to develop the regularity theory. Indeed, we prove interior and boundary Schauder regularity estimates depending on the smoothness of the coefficients A(x), the right hand side f and the boundary of the domain. Moreover, we establish estimates for fundamental solutions in the spirit of the classical result by Littman–Stampacchia–Weinberger and we obtain nonlocal integro-differential formulas for Lsu(x). Essential tools in the analysis are the semigroup language approach and the extension problem.

DOI : 10.1016/j.anihpc.2015.01.004
Classification : 35R11, 35B65, 35K05, 35B45, 46E35
Keywords: Fractional Laplacian, Fractional divergence form elliptic operator, Schauder estimates, Fundamental solution, Semigroup language, Extension problem
@article{AIHPC_2016__33_3_767_0,
     author = {Caffarelli, Luis A. and Stinga, Pablo Ra\'ul},
     title = {Fractional elliptic equations, {Caccioppoli} estimates and regularity},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {767--807},
     publisher = {Elsevier},
     volume = {33},
     number = {3},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.01.004},
     zbl = {1381.35211},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.01.004/}
}
TY  - JOUR
AU  - Caffarelli, Luis A.
AU  - Stinga, Pablo Raúl
TI  - Fractional elliptic equations, Caccioppoli estimates and regularity
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 767
EP  - 807
VL  - 33
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.01.004/
DO  - 10.1016/j.anihpc.2015.01.004
LA  - en
ID  - AIHPC_2016__33_3_767_0
ER  - 
%0 Journal Article
%A Caffarelli, Luis A.
%A Stinga, Pablo Raúl
%T Fractional elliptic equations, Caccioppoli estimates and regularity
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 767-807
%V 33
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.01.004/
%R 10.1016/j.anihpc.2015.01.004
%G en
%F AIHPC_2016__33_3_767_0
Caffarelli, Luis A.; Stinga, Pablo Raúl. Fractional elliptic equations, Caccioppoli estimates and regularity. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 3, pp. 767-807. doi: 10.1016/j.anihpc.2015.01.004

Cité par Sources :