Voir la notice de l'article provenant de la source Numdam
We prove invariance of the Gibbs measure for the (gauge transformed) periodic quartic gKdV. The Gibbs measure is supported on for , and the quartic gKdV is analytically ill-posed in this range. In order to consider the flow in the support of the Gibbs measure, we combine a probabilistic argument with the second iteration and construct local-in-time solutions to the (gauge transformed) quartic gKdV almost surely in the support of the Gibbs measure. Then, we use Bourgain's idea to extend these local solutions to global solutions, and prove the invariance of the Gibbs measure under the flow. Finally, inverting the gauge, we construct almost sure global solutions to the (ungauged) quartic gKdV below .
@article{AIHPC_2016__33_3_699_0, author = {Richards, Geordie}, title = {Invariance of the {Gibbs} measure for the periodic quartic {gKdV}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {699--766}, publisher = {Elsevier}, volume = {33}, number = {3}, year = {2016}, doi = {10.1016/j.anihpc.2015.01.003}, zbl = {1342.35310}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.01.003/} }
TY - JOUR AU - Richards, Geordie TI - Invariance of the Gibbs measure for the periodic quartic gKdV JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 699 EP - 766 VL - 33 IS - 3 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.01.003/ DO - 10.1016/j.anihpc.2015.01.003 LA - en ID - AIHPC_2016__33_3_699_0 ER -
%0 Journal Article %A Richards, Geordie %T Invariance of the Gibbs measure for the periodic quartic gKdV %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 699-766 %V 33 %N 3 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2015.01.003/ %R 10.1016/j.anihpc.2015.01.003 %G en %F AIHPC_2016__33_3_699_0
Richards, Geordie. Invariance of the Gibbs measure for the periodic quartic gKdV. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 3, pp. 699-766. doi: 10.1016/j.anihpc.2015.01.003
Cité par Sources :