On the inviscid limit of the 2D Navier–Stokes equations with vorticity belonging to BMO-type spaces
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 2, pp. 597-619
Voir la notice de l'article provenant de la source Numdam
In a recent paper [6], the global well-posedness of the two-dimensional Euler equation with vorticity in was proved, where LBMO is a Banach space which is strictly imbricated between and BMO. In the present paper we prove a global result on the inviscid limit of the Navier–Stokes system with data in this space and other spaces with the same BMO flavor. Some results of local uniform estimates on solutions of the Navier–Stokes equations, independent of the viscosity, are also obtained.
DOI :
10.1016/j.anihpc.2014.12.001
Classification :
76B03, 35Q35
Keywords: 2D incompressible Navier–Stokes equations, Inviscid limit, Global well-posedness, BMO-type space
Keywords: 2D incompressible Navier–Stokes equations, Inviscid limit, Global well-posedness, BMO-type space
@article{AIHPC_2016__33_2_597_0, author = {Bernicot, Fr\'ed\'eric and Elgindi, Tarek and Keraani, Sahbi}, title = {On the inviscid limit of the {2D} {Navier{\textendash}Stokes} equations with vorticity belonging to {BMO-type} spaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {597--619}, publisher = {Elsevier}, volume = {33}, number = {2}, year = {2016}, doi = {10.1016/j.anihpc.2014.12.001}, zbl = {1332.35280}, mrnumber = {3465387}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.12.001/} }
TY - JOUR AU - Bernicot, Frédéric AU - Elgindi, Tarek AU - Keraani, Sahbi TI - On the inviscid limit of the 2D Navier–Stokes equations with vorticity belonging to BMO-type spaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 597 EP - 619 VL - 33 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.12.001/ DO - 10.1016/j.anihpc.2014.12.001 LA - en ID - AIHPC_2016__33_2_597_0 ER -
%0 Journal Article %A Bernicot, Frédéric %A Elgindi, Tarek %A Keraani, Sahbi %T On the inviscid limit of the 2D Navier–Stokes equations with vorticity belonging to BMO-type spaces %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 597-619 %V 33 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.12.001/ %R 10.1016/j.anihpc.2014.12.001 %G en %F AIHPC_2016__33_2_597_0
Bernicot, Frédéric; Elgindi, Tarek; Keraani, Sahbi. On the inviscid limit of the 2D Navier–Stokes equations with vorticity belonging to BMO-type spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 2, pp. 597-619. doi: 10.1016/j.anihpc.2014.12.001
Cité par Sources :