Existence and regularity of strict critical subsolutions in the stationary ergodic setting
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 2, pp. 243-272
Voir la notice de l'article provenant de la source Numdam
We prove that any continuous and convex stationary ergodic Hamiltonian admits critical subsolutions, which are strict outside the random Aubry set. They make up, in addition, a dense subset of all critical subsolutions with respect to a suitable metric. If the Hamiltonian is additionally assumed of Tonelli type, then there exist strict subsolutions of class in . The proofs are based on the use of Lax–Oleinik semigroups and their regularizing properties in the stationary ergodic environment, as well as on a generalized notion of Aubry set.
DOI :
10.1016/j.anihpc.2014.09.010
Classification :
35D40, 35B27, 35F21, 49L25
Keywords: Stationary ergodic setting, Weak KAM Theory, Homogenization, Viscosity solutions
Keywords: Stationary ergodic setting, Weak KAM Theory, Homogenization, Viscosity solutions
@article{AIHPC_2016__33_2_243_0,
author = {Davini, Andrea and Siconolfi, Antonio},
title = {Existence and regularity of strict critical subsolutions in the stationary ergodic setting},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {243--272},
publisher = {Elsevier},
volume = {33},
number = {2},
year = {2016},
doi = {10.1016/j.anihpc.2014.09.010},
zbl = {1336.35114},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.09.010/}
}
TY - JOUR AU - Davini, Andrea AU - Siconolfi, Antonio TI - Existence and regularity of strict critical subsolutions in the stationary ergodic setting JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 243 EP - 272 VL - 33 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.09.010/ DO - 10.1016/j.anihpc.2014.09.010 LA - en ID - AIHPC_2016__33_2_243_0 ER -
%0 Journal Article %A Davini, Andrea %A Siconolfi, Antonio %T Existence and regularity of strict critical subsolutions in the stationary ergodic setting %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 243-272 %V 33 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.09.010/ %R 10.1016/j.anihpc.2014.09.010 %G en %F AIHPC_2016__33_2_243_0
Davini, Andrea; Siconolfi, Antonio. Existence and regularity of strict critical subsolutions in the stationary ergodic setting. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 2, pp. 243-272. doi: 10.1016/j.anihpc.2014.09.010
Cité par Sources :
