Optimal L p Hardy-type inequalities
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 93-118

Voir la notice de l'article provenant de la source Numdam

Let Ω be a domain in Rn or a noncompact Riemannian manifold of dimension n2, and 1<p<. Consider the functional Q(φ):=Ω(|φ|p+V|φ|p)dν defined on C0(Ω), and assume that Q0. The aim of the paper is to generalize to the quasilinear case (p2) some of the results obtained in [6] for the linear case (p=2), and in particular, to obtain “as large as possible” nonnegative (optimal) Hardy-type weight W satisfying

Q(φ)ΩW|φ|pdνφC0(Ω).

Our main results deal with the case where V=0, and Ω is a general punctured domain (for V0 we obtain only some partial results). In the case 1<pn, an optimal Hardy-weight is given by

W:=(p1p)p|GG|p,
where G is the associated positive minimal Green function with a pole at 0. On the other hand, for p>n, several cases should be considered, depending on the behavior of G at infinity in Ω. The results are extended to annular and exterior domains.

DOI : 10.1016/j.anihpc.2014.08.005
Keywords: Hardy inequality, Optimal, p-Laplacian
@article{AIHPC_2016__33_1_93_0,
     author = {Devyver, Baptiste and Pinchover, Yehuda},
     title = {Optimal {\protect\emph{L}}         \protect\textsuperscript{            \protect\emph{p}         } {Hardy-type} inequalities},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {93--118},
     publisher = {Elsevier},
     volume = {33},
     number = {1},
     year = {2016},
     doi = {10.1016/j.anihpc.2014.08.005},
     mrnumber = {3436428},
     zbl = {1331.35013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.08.005/}
}
TY  - JOUR
AU  - Devyver, Baptiste
AU  - Pinchover, Yehuda
TI  - Optimal L                     p          Hardy-type inequalities
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 93
EP  - 118
VL  - 33
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.08.005/
DO  - 10.1016/j.anihpc.2014.08.005
LA  - en
ID  - AIHPC_2016__33_1_93_0
ER  - 
%0 Journal Article
%A Devyver, Baptiste
%A Pinchover, Yehuda
%T Optimal L                     p          Hardy-type inequalities
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 93-118
%V 33
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.08.005/
%R 10.1016/j.anihpc.2014.08.005
%G en
%F AIHPC_2016__33_1_93_0
Devyver, Baptiste; Pinchover, Yehuda. Optimal L                     p          Hardy-type inequalities. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 93-118. doi: 10.1016/j.anihpc.2014.08.005

Cité par Sources :