Voir la notice de l'article provenant de la source Numdam
Poincaré's invariance principle for Hamiltonian flows implies Kelvin's principle for solution to Incompressible Euler equation. Constantin–Iyer Circulation Theorem offers a stochastic analog of Kelvin's principle for Navier–Stokes equation. Weakly symplectic diffusions are defined to produce stochastically symplectic flows in a systematic way. With the aid of symplectic diffusions, we produce a family of martigales associated with solutions to Navier–Stokes equation that in turn can be used to prove Constantin–Iyer Circulation Theorem. We also review some basic facts in symplectic and contact geometry and their applications to Euler equation.
@article{AIHPC_2016__33_1_1_0, author = {Rezakhanlou, Fraydoun}, title = {Stochastically symplectic maps and their applications to the {Navier{\textendash}Stokes} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1--22}, publisher = {Elsevier}, volume = {33}, number = {1}, year = {2016}, doi = {10.1016/j.anihpc.2014.09.001}, mrnumber = {3436425}, zbl = {1330.53103}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.09.001/} }
TY - JOUR AU - Rezakhanlou, Fraydoun TI - Stochastically symplectic maps and their applications to the Navier–Stokes equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 1 EP - 22 VL - 33 IS - 1 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.09.001/ DO - 10.1016/j.anihpc.2014.09.001 LA - en ID - AIHPC_2016__33_1_1_0 ER -
%0 Journal Article %A Rezakhanlou, Fraydoun %T Stochastically symplectic maps and their applications to the Navier–Stokes equation %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 1-22 %V 33 %N 1 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.09.001/ %R 10.1016/j.anihpc.2014.09.001 %G en %F AIHPC_2016__33_1_1_0
Rezakhanlou, Fraydoun. Stochastically symplectic maps and their applications to the Navier–Stokes equation. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 1-22. doi: 10.1016/j.anihpc.2014.09.001
Cité par Sources :