Stochastically symplectic maps and their applications to the Navier–Stokes equation
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 1-22

Voir la notice de l'article provenant de la source Numdam

Poincaré's invariance principle for Hamiltonian flows implies Kelvin's principle for solution to Incompressible Euler equation. Constantin–Iyer Circulation Theorem offers a stochastic analog of Kelvin's principle for Navier–Stokes equation. Weakly symplectic diffusions are defined to produce stochastically symplectic flows in a systematic way. With the aid of symplectic diffusions, we produce a family of martigales associated with solutions to Navier–Stokes equation that in turn can be used to prove Constantin–Iyer Circulation Theorem. We also review some basic facts in symplectic and contact geometry and their applications to Euler equation.

DOI : 10.1016/j.anihpc.2014.09.001
Keywords: Symplectic geometry, Incompressible Euler equation, Navier–Stokes equation, Diffusions, Stochastic differential equation
@article{AIHPC_2016__33_1_1_0,
     author = {Rezakhanlou, Fraydoun},
     title = {Stochastically symplectic maps and their applications to the {Navier{\textendash}Stokes} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1--22},
     publisher = {Elsevier},
     volume = {33},
     number = {1},
     year = {2016},
     doi = {10.1016/j.anihpc.2014.09.001},
     mrnumber = {3436425},
     zbl = {1330.53103},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.09.001/}
}
TY  - JOUR
AU  - Rezakhanlou, Fraydoun
TI  - Stochastically symplectic maps and their applications to the Navier–Stokes equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1
EP  - 22
VL  - 33
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.09.001/
DO  - 10.1016/j.anihpc.2014.09.001
LA  - en
ID  - AIHPC_2016__33_1_1_0
ER  - 
%0 Journal Article
%A Rezakhanlou, Fraydoun
%T Stochastically symplectic maps and their applications to the Navier–Stokes equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1-22
%V 33
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.09.001/
%R 10.1016/j.anihpc.2014.09.001
%G en
%F AIHPC_2016__33_1_1_0
Rezakhanlou, Fraydoun. Stochastically symplectic maps and their applications to the Navier–Stokes equation. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 1-22. doi: 10.1016/j.anihpc.2014.09.001

Cité par Sources :