On the planar Schrödinger–Poisson system
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 169-197

Voir la notice de l'article provenant de la source Numdam

We develop a variational framework to detect high energy solutions of the planar Schrödinger–Poisson system

{Δu+a(x)u+γwu=0,Δw=u2in R2
with a positive function aL(R2) and γ>0. In particular, we deal with the periodic setting where the corresponding functional is invariant under Z2-translations and therefore fails to satisfy a global Palais–Smale condition. The key tool is a surprisingly strong compactness condition for Cerami sequences which is not available for the corresponding problem in higher space dimensions. In the case where the external potential a is a positive constant, we also derive, as a special case of a more general result, the existence of nonradial solutions (u,w) such that u has arbitrarily many nodal domains. Finally, in the case where a is constant, we also show that solutions of the above problem with u>0 in R2 and w(x) as |x| are radially symmetric up to translation. Our results are also valid for a variant of the above system containing a local nonlinear term in u in the first equation.

DOI : 10.1016/j.anihpc.2014.09.008
Classification : 35J50, 35Q40
Keywords: Schrödinger–Poisson system, Logarithmic convolution potential, Standing wave solutions
@article{AIHPC_2016__33_1_169_0,
     author = {Cingolani, Silvia and Weth, Tobias},
     title = {On the planar {Schr\"odinger{\textendash}Poisson} system},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {169--197},
     publisher = {Elsevier},
     volume = {33},
     number = {1},
     year = {2016},
     doi = {10.1016/j.anihpc.2014.09.008},
     mrnumber = {3436430},
     zbl = {1331.35126},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.09.008/}
}
TY  - JOUR
AU  - Cingolani, Silvia
AU  - Weth, Tobias
TI  - On the planar Schrödinger–Poisson system
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 169
EP  - 197
VL  - 33
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.09.008/
DO  - 10.1016/j.anihpc.2014.09.008
LA  - en
ID  - AIHPC_2016__33_1_169_0
ER  - 
%0 Journal Article
%A Cingolani, Silvia
%A Weth, Tobias
%T On the planar Schrödinger–Poisson system
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 169-197
%V 33
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.09.008/
%R 10.1016/j.anihpc.2014.09.008
%G en
%F AIHPC_2016__33_1_169_0
Cingolani, Silvia; Weth, Tobias. On the planar Schrödinger–Poisson system. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 169-197. doi: 10.1016/j.anihpc.2014.09.008

Cité par Sources :