Voir la notice de l'article provenant de la source Numdam
Let be the Stokes operator defined in a bounded domain Ω of with Dirichlet boundary conditions. We prove that, generically with respect to the domain Ω with boundary, the spectrum of satisfies a non-resonant property introduced by C. Foias and J.C. Saut in [17] to linearize the Navier–Stokes system in a bounded domain Ω of with Dirichlet boundary conditions. For that purpose, we first prove that, generically with respect to the domain Ω with boundary, all the eigenvalues of are simple. That answers positively a question raised by J.H. Ortega and E. Zuazua in [27, Section 6]. The proofs of these results follow a standard strategy based on a contradiction argument requiring shape differentiation. One needs to shape differentiate at least twice the initial problem in the direction of carefully chosen domain variations. The main step of the contradiction argument amounts to study the evaluation of Dirichlet-to-Neumann operators associated to these domain variations.
@article{AIHPC_2016__33_1_119_0,
     author = {Chitour, Y. and Kateb, D. and Long, R.},
     title = {Generic properties of the spectrum of the {Stokes} system with {Dirichlet} boundary condition in $ {\mathbb{R}}^{3}$},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {119--167},
     publisher = {Elsevier},
     volume = {33},
     number = {1},
     year = {2016},
     doi = {10.1016/j.anihpc.2014.09.007},
     mrnumber = {3436429},
     zbl = {1335.35163},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.09.007/}
}
                      
                      
                    TY  - JOUR
AU  - Chitour, Y.
AU  - Kateb, D.
AU  - Long, R.
TI  - Generic properties of the spectrum of the Stokes system with Dirichlet boundary condition in $ {\mathbb{R}}^{3}$
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 119
EP  - 167
VL  - 33
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.09.007/
DO  - 10.1016/j.anihpc.2014.09.007
LA  - en
ID  - AIHPC_2016__33_1_119_0
ER  - 
                      
                      
                    %0 Journal Article
%A Chitour, Y.
%A Kateb, D.
%A Long, R.
%T Generic properties of the spectrum of the Stokes system with Dirichlet boundary condition in $ {\mathbb{R}}^{3}$
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 119-167
%V 33
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.09.007/
%R 10.1016/j.anihpc.2014.09.007
%G en
%F AIHPC_2016__33_1_119_0
                      
                      
                    Chitour, Y.; Kateb, D.; Long, R. Generic properties of the spectrum of the Stokes system with Dirichlet boundary condition in $ {\mathbb{R}}^{3}$. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 119-167. doi: 10.1016/j.anihpc.2014.09.007
                  
                Cité par Sources :
    