Voir la notice de l'article provenant de la source Numdam
We address and answer the question of optimal lifting estimates for unimodular complex valued maps: given and , find the best possible estimate of the form .The most delicate case is . In this case, we extend the results obtained in [3,4] for (using Fourier analysis and optimal constants in the Sobolev embeddings) by developing non- estimates and an approach based on symmetrization. Following an idea of Bourgain (presented in [3]), our proof also relies on averaged estimates for martingales. As a byproduct of our arguments, we obtain a characterization of fractional Sobolev spaces with involving averaged martingale estimates.Also when , we propose a new phase construction method, based on oscillations detection, and discuss existence of a bounded phase.When , we extend to higher dimensions a result on optimal estimates of Merlet [20], based on one-dimensional arguments. This extension requires new ingredients (factorization techniques, duality methods).
@article{AIHPC_2015__32_5_965_0,
author = {Mironescu, Petru and Molnar, Ioana},
title = {Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of {Sobolev} spaces},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {965--1013},
publisher = {Elsevier},
volume = {32},
number = {5},
year = {2015},
doi = {10.1016/j.anihpc.2014.04.005},
mrnumber = {3400439},
zbl = {1339.46037},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.04.005/}
}
TY - JOUR AU - Mironescu, Petru AU - Molnar, Ioana TI - Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 965 EP - 1013 VL - 32 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.04.005/ DO - 10.1016/j.anihpc.2014.04.005 LA - en ID - AIHPC_2015__32_5_965_0 ER -
%0 Journal Article %A Mironescu, Petru %A Molnar, Ioana %T Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 965-1013 %V 32 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.04.005/ %R 10.1016/j.anihpc.2014.04.005 %G en %F AIHPC_2015__32_5_965_0
Mironescu, Petru; Molnar, Ioana. Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 5, pp. 965-1013. doi: 10.1016/j.anihpc.2014.04.005
Cité par Sources :
