Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 5, pp. 965-1013

Voir la notice de l'article provenant de la source Numdam

We address and answer the question of optimal lifting estimates for unimodular complex valued maps: given s>0 and 1p<, find the best possible estimate of the form |ϕ| W s,p F(|e ıϕ | W s,p ).The most delicate case is sp<1. In this case, we extend the results obtained in [3,4] for p=2 (using L 2 Fourier analysis and optimal constants in the Sobolev embeddings) by developing non-L 2 estimates and an approach based on symmetrization. Following an idea of Bourgain (presented in [3]), our proof also relies on averaged estimates for martingales. As a byproduct of our arguments, we obtain a characterization of fractional Sobolev spaces with 0<s<1 involving averaged martingale estimates.Also when sp<1, we propose a new phase construction method, based on oscillations detection, and discuss existence of a bounded phase.When sp1, we extend to higher dimensions a result on optimal estimates of Merlet [20], based on one-dimensional arguments. This extension requires new ingredients (factorization techniques, duality methods).

DOI : 10.1016/j.anihpc.2014.04.005
Keywords: Unimodular maps, Lifting, Sobolev spaces
@article{AIHPC_2015__32_5_965_0,
     author = {Mironescu, Petru and Molnar, Ioana},
     title = {Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of {Sobolev} spaces},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {965--1013},
     publisher = {Elsevier},
     volume = {32},
     number = {5},
     year = {2015},
     doi = {10.1016/j.anihpc.2014.04.005},
     mrnumber = {3400439},
     zbl = {1339.46037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.04.005/}
}
TY  - JOUR
AU  - Mironescu, Petru
AU  - Molnar, Ioana
TI  - Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2015
SP  - 965
EP  - 1013
VL  - 32
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.04.005/
DO  - 10.1016/j.anihpc.2014.04.005
LA  - en
ID  - AIHPC_2015__32_5_965_0
ER  - 
%0 Journal Article
%A Mironescu, Petru
%A Molnar, Ioana
%T Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces
%J Annales de l'I.H.P. Analyse non linéaire
%D 2015
%P 965-1013
%V 32
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.04.005/
%R 10.1016/j.anihpc.2014.04.005
%G en
%F AIHPC_2015__32_5_965_0
Mironescu, Petru; Molnar, Ioana. Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 5, pp. 965-1013. doi: 10.1016/j.anihpc.2014.04.005

Cité par Sources :