Uniqueness of the minimizer for a random non-local functional with double-well potential in d 2
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 3, pp. 593-622

Voir la notice de l'article provenant de la source Numdam

We consider a small random perturbation of the energy functional

[u] H s (Λ, d ) 2 + ΛW(u(x))dx
for s(0,1), where the non-local part [u] H s (Λ, d ) 2 denotes the total contribution from Λ d in the H s ( d ) Gagliardo semi-norm of u and W is a double well potential. We show that there exists, as Λ invades d , for almost all realizations of the random term a minimizer under compact perturbations, which is unique when d=2, s(1 2,1) and when d=1, s[1 4,1). This uniqueness is a consequence of the randomness. When the random term is absent, there are two minimizers which are invariant under translations in space, u=±1.

DOI : 10.1016/j.anihpc.2014.02.002
Classification : 35R60, 80M35, 82D30, 74Q05
Keywords: Random functionals, Phase segregation in disordered materials, Fractional Laplacian
@article{AIHPC_2015__32_3_593_0,
     author = {Dirr, Nicolas and Orlandi, Enza},
     title = {Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {593--622},
     publisher = {Elsevier},
     volume = {32},
     number = {3},
     year = {2015},
     doi = {10.1016/j.anihpc.2014.02.002},
     zbl = {1320.35355},
     mrnumber = {3353702},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.02.002/}
}
TY  - JOUR
AU  - Dirr, Nicolas
AU  - Orlandi, Enza
TI  - Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2015
SP  - 593
EP  - 622
VL  - 32
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.02.002/
DO  - 10.1016/j.anihpc.2014.02.002
LA  - en
ID  - AIHPC_2015__32_3_593_0
ER  - 
%0 Journal Article
%A Dirr, Nicolas
%A Orlandi, Enza
%T Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$
%J Annales de l'I.H.P. Analyse non linéaire
%D 2015
%P 593-622
%V 32
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.02.002/
%R 10.1016/j.anihpc.2014.02.002
%G en
%F AIHPC_2015__32_3_593_0
Dirr, Nicolas; Orlandi, Enza. Uniqueness of the minimizer for a random non-local functional with double-well potential in $ d\leq 2$. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 3, pp. 593-622. doi: 10.1016/j.anihpc.2014.02.002

Cité par Sources :