Non-uniqueness of weak solutions to the wave map problem
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 3, pp. 519-532

Voir la notice de l'article provenant de la source Numdam

In this note we show that weak solutions to the wave map problem in the energy-supercritical dimension 3 are not unique. On the one hand, we find weak solutions using the penalization method introduced by Shatah [12] and show that they satisfy a local energy inequality. On the other hand we build on a special harmonic map to construct a weak solution to the wave map problem, which violates this energy inequality.Finally we establish a local weak-strong uniqueness argument in the spirit of Struwe [15] which we employ to show that one may even have a failure of uniqueness for a Cauchy problem with a stationary solution. We thus obtain a result analogous to the one of Coron [2] for the case of the heat flow of harmonic maps.

DOI : 10.1016/j.anihpc.2014.02.001
Classification : 35L05, 35L71
Keywords: Wave maps, Weak solutions, Weak-strong uniqueness
@article{AIHPC_2015__32_3_519_0,
     author = {Widmayer, Klaus},
     title = {Non-uniqueness of weak solutions to the wave map problem},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {519--532},
     publisher = {Elsevier},
     volume = {32},
     number = {3},
     year = {2015},
     doi = {10.1016/j.anihpc.2014.02.001},
     mrnumber = {3353699},
     zbl = {1320.35006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.02.001/}
}
TY  - JOUR
AU  - Widmayer, Klaus
TI  - Non-uniqueness of weak solutions to the wave map problem
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2015
SP  - 519
EP  - 532
VL  - 32
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.02.001/
DO  - 10.1016/j.anihpc.2014.02.001
LA  - en
ID  - AIHPC_2015__32_3_519_0
ER  - 
%0 Journal Article
%A Widmayer, Klaus
%T Non-uniqueness of weak solutions to the wave map problem
%J Annales de l'I.H.P. Analyse non linéaire
%D 2015
%P 519-532
%V 32
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.02.001/
%R 10.1016/j.anihpc.2014.02.001
%G en
%F AIHPC_2015__32_3_519_0
Widmayer, Klaus. Non-uniqueness of weak solutions to the wave map problem. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 3, pp. 519-532. doi: 10.1016/j.anihpc.2014.02.001

Cité par Sources :