BV functions and sets of finite perimeter in sub-Riemannian manifolds
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 3, pp. 489-517

Voir la notice de l'article provenant de la source Numdam

We give a notion of BV function on an oriented manifold where a volume form and a family of lower semicontinuous quadratic forms G p :T p M[0,] are given. When we consider sub-Riemannian manifolds, our definition coincides with the one given in the more general context of metric measure spaces which are doubling and support a Poincaré inequality. We focus on finite perimeter sets, i.e., sets whose characteristic function is BV, in sub-Riemannian manifolds. Under an assumption on the nilpotent approximation, we prove a blowup theorem, generalizing the one obtained for step-2 Carnot groups in [24].

@article{AIHPC_2015__32_3_489_0,
     author = {Ambrosio, L. and Ghezzi, R. and Magnani, V.},
     title = {BV functions and sets of finite perimeter in {sub-Riemannian} manifolds},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {489--517},
     publisher = {Elsevier},
     volume = {32},
     number = {3},
     year = {2015},
     doi = {10.1016/j.anihpc.2014.01.005},
     mrnumber = {3353698},
     zbl = {1320.53034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.01.005/}
}
TY  - JOUR
AU  - Ambrosio, L.
AU  - Ghezzi, R.
AU  - Magnani, V.
TI  - BV functions and sets of finite perimeter in sub-Riemannian manifolds
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2015
SP  - 489
EP  - 517
VL  - 32
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.01.005/
DO  - 10.1016/j.anihpc.2014.01.005
LA  - en
ID  - AIHPC_2015__32_3_489_0
ER  - 
%0 Journal Article
%A Ambrosio, L.
%A Ghezzi, R.
%A Magnani, V.
%T BV functions and sets of finite perimeter in sub-Riemannian manifolds
%J Annales de l'I.H.P. Analyse non linéaire
%D 2015
%P 489-517
%V 32
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2014.01.005/
%R 10.1016/j.anihpc.2014.01.005
%G en
%F AIHPC_2015__32_3_489_0
Ambrosio, L.; Ghezzi, R.; Magnani, V. BV functions and sets of finite perimeter in sub-Riemannian manifolds. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 3, pp. 489-517. doi: 10.1016/j.anihpc.2014.01.005

Cité par Sources :