Regularity of p(·)-superharmonic functions, the Kellogg property and semiregular boundary points
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 6, pp. 1131-1153

Voir la notice de l'article provenant de la source Numdam

We study various boundary and inner regularity questions for p(·)-(super)harmonic functions in Euclidean domains. In particular, we prove the Kellogg property and introduce a classification of boundary points for p(·)-harmonic functions into three disjoint classes: regular, semiregular and strongly irregular points. Regular and especially semiregular points are characterized in many ways. The discussion is illustrated by examples.Along the way, we present a removability result for bounded p(·)-harmonic functions and give some new characterizations of W 0 1,p(·) spaces. We also show that p(·)-superharmonic functions are lower semicontinuously regularized, and characterize them in terms of lower semicontinuously regularized supersolutions.

DOI : 10.1016/j.anihpc.2013.07.012
Classification : 35J67, 31C45, 46E35
Keywords: Comparison principle, Kellogg property, lsc-regularized, Nonlinear potential theory, Nonstandard growth equation, Obstacle problem, $ p(\cdot )$-harmonic, Quasicontinuous, Regular boundary point, Removable singularity, Semiregular point, Sobolev space, Strongly irregular point, $ p(\cdot )$-superharmonic, $ p(\cdot )$-supersolution, Trichotomy, Variable exponent
@article{AIHPC_2014__31_6_1131_0,
     author = {Adamowicz, Tomasz and Bj\"orn, Anders and Bj\"orn, Jana},
     title = {Regularity of $ p(\cdot )$-superharmonic functions, the {Kellogg} property and semiregular boundary points},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1131--1153},
     publisher = {Elsevier},
     volume = {31},
     number = {6},
     year = {2014},
     doi = {10.1016/j.anihpc.2013.07.012},
     mrnumber = {3280063},
     zbl = {1304.35296},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.07.012/}
}
TY  - JOUR
AU  - Adamowicz, Tomasz
AU  - Björn, Anders
AU  - Björn, Jana
TI  - Regularity of $ p(\cdot )$-superharmonic functions, the Kellogg property and semiregular boundary points
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2014
SP  - 1131
EP  - 1153
VL  - 31
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.07.012/
DO  - 10.1016/j.anihpc.2013.07.012
LA  - en
ID  - AIHPC_2014__31_6_1131_0
ER  - 
%0 Journal Article
%A Adamowicz, Tomasz
%A Björn, Anders
%A Björn, Jana
%T Regularity of $ p(\cdot )$-superharmonic functions, the Kellogg property and semiregular boundary points
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 1131-1153
%V 31
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.07.012/
%R 10.1016/j.anihpc.2013.07.012
%G en
%F AIHPC_2014__31_6_1131_0
Adamowicz, Tomasz; Björn, Anders; Björn, Jana. Regularity of $ p(\cdot )$-superharmonic functions, the Kellogg property and semiregular boundary points. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 6, pp. 1131-1153. doi: 10.1016/j.anihpc.2013.07.012

Cité par Sources :