Estimates on fractional higher derivatives of weak solutions for the Navier–Stokes equations
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 5, pp. 899-945

Voir la notice de l'article provenant de la source Numdam

We study weak solutions of the 3D Navier–Stokes equations with L 2 initial data. We prove that α u is locally integrable in space–time for any real α such that 1<α<3. Up to now, only the second derivative 2 u was known to be locally integrable by standard parabolic regularization. We also present sharp estimates of those quantities in weak-L 𝑙𝑜𝑐 4/(α+1) . These estimates depend only on the L 2 -norm of the initial data and on the domain of integration. Moreover, they are valid even for α3 as long as u is smooth. The proof uses a standard approximation of Navier–Stokes from Leray and blow-up techniques. The local study is based on De Giorgi techniques with a new pressure decomposition. To handle the non-locality of fractional Laplacians, Hardy space and Maximal functions are introduced.

DOI : 10.1016/j.anihpc.2013.08.001
Classification : 76D05, 35Q30
Keywords: Navier–Stokes equations, Fluid mechanics, Blow-up techniques, Weak solutions, Higher derivatives, Fractional derivatives
@article{AIHPC_2014__31_5_899_0,
     author = {Choi, Kyudong and Vasseur, Alexis F.},
     title = {Estimates on fractional higher derivatives of weak solutions for the {Navier{\textendash}Stokes} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {899--945},
     publisher = {Elsevier},
     volume = {31},
     number = {5},
     year = {2014},
     doi = {10.1016/j.anihpc.2013.08.001},
     mrnumber = {3258360},
     zbl = {1297.76047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.08.001/}
}
TY  - JOUR
AU  - Choi, Kyudong
AU  - Vasseur, Alexis F.
TI  - Estimates on fractional higher derivatives of weak solutions for the Navier–Stokes equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2014
SP  - 899
EP  - 945
VL  - 31
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.08.001/
DO  - 10.1016/j.anihpc.2013.08.001
LA  - en
ID  - AIHPC_2014__31_5_899_0
ER  - 
%0 Journal Article
%A Choi, Kyudong
%A Vasseur, Alexis F.
%T Estimates on fractional higher derivatives of weak solutions for the Navier–Stokes equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 899-945
%V 31
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.08.001/
%R 10.1016/j.anihpc.2013.08.001
%G en
%F AIHPC_2014__31_5_899_0
Choi, Kyudong; Vasseur, Alexis F. Estimates on fractional higher derivatives of weak solutions for the Navier–Stokes equations. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 5, pp. 899-945. doi: 10.1016/j.anihpc.2013.08.001

Cité par Sources :