Voir la notice de l'article provenant de la source Numdam
We study weak solutions of the 3D Navier–Stokes equations with initial data. We prove that is locally integrable in space–time for any real α such that . Up to now, only the second derivative was known to be locally integrable by standard parabolic regularization. We also present sharp estimates of those quantities in weak-. These estimates depend only on the -norm of the initial data and on the domain of integration. Moreover, they are valid even for as long as u is smooth. The proof uses a standard approximation of Navier–Stokes from Leray and blow-up techniques. The local study is based on De Giorgi techniques with a new pressure decomposition. To handle the non-locality of fractional Laplacians, Hardy space and Maximal functions are introduced.
Keywords: Navier–Stokes equations, Fluid mechanics, Blow-up techniques, Weak solutions, Higher derivatives, Fractional derivatives
@article{AIHPC_2014__31_5_899_0, author = {Choi, Kyudong and Vasseur, Alexis F.}, title = {Estimates on fractional higher derivatives of weak solutions for the {Navier{\textendash}Stokes} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {899--945}, publisher = {Elsevier}, volume = {31}, number = {5}, year = {2014}, doi = {10.1016/j.anihpc.2013.08.001}, mrnumber = {3258360}, zbl = {1297.76047}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.08.001/} }
TY - JOUR AU - Choi, Kyudong AU - Vasseur, Alexis F. TI - Estimates on fractional higher derivatives of weak solutions for the Navier–Stokes equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 899 EP - 945 VL - 31 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.08.001/ DO - 10.1016/j.anihpc.2013.08.001 LA - en ID - AIHPC_2014__31_5_899_0 ER -
%0 Journal Article %A Choi, Kyudong %A Vasseur, Alexis F. %T Estimates on fractional higher derivatives of weak solutions for the Navier–Stokes equations %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 899-945 %V 31 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.08.001/ %R 10.1016/j.anihpc.2013.08.001 %G en %F AIHPC_2014__31_5_899_0
Choi, Kyudong; Vasseur, Alexis F. Estimates on fractional higher derivatives of weak solutions for the Navier–Stokes equations. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 5, pp. 899-945. doi: 10.1016/j.anihpc.2013.08.001
Cité par Sources :