Voir la notice de l'article provenant de la source Numdam
We study curvature functionals for immersed 2-spheres in non-compact, three-dimensional Riemannian manifold without boundary. First, under the assumption that is the euclidean 3-space endowed with a semi-perturbed metric with perturbation small in norm and of compact support, we prove that if there is some point with scalar curvature then there exists a smooth embedding minimizing the Willmore functional , where H is the mean curvature. Second, assuming that is of bounded geometry (i.e. bounded sectional curvature and strictly positive injectivity radius) and asymptotically euclidean or hyperbolic we prove that if there is some point with scalar curvature then there exists a smooth immersion minimizing the functional , where A is the second fundamental form. Finally, adding the bound to the last assumptions, we obtain a smooth minimizer for the functional . The assumptions of the last two theorems are satisfied in a large class of 3-manifolds arising as spacelike timeslices solutions of the Einstein vacuum equation in case of null or negative cosmological constant.
Keywords: $ {L}^{2}$ second fundamental form, Willmore functional, Direct methods in the calculus of variations, Geometric measure theory, General Relativity
@article{AIHPC_2014__31_4_707_0,
author = {Mondino, Andrea and Schygulla, Johannes},
title = {Existence of immersed spheres minimizing curvature functionals in non-compact 3-manifolds},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {707--724},
publisher = {Elsevier},
volume = {31},
number = {4},
year = {2014},
doi = {10.1016/j.anihpc.2013.07.002},
mrnumber = {3249810},
zbl = {1300.53042},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.07.002/}
}
TY - JOUR AU - Mondino, Andrea AU - Schygulla, Johannes TI - Existence of immersed spheres minimizing curvature functionals in non-compact 3-manifolds JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 707 EP - 724 VL - 31 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.07.002/ DO - 10.1016/j.anihpc.2013.07.002 LA - en ID - AIHPC_2014__31_4_707_0 ER -
%0 Journal Article %A Mondino, Andrea %A Schygulla, Johannes %T Existence of immersed spheres minimizing curvature functionals in non-compact 3-manifolds %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 707-724 %V 31 %N 4 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.07.002/ %R 10.1016/j.anihpc.2013.07.002 %G en %F AIHPC_2014__31_4_707_0
Mondino, Andrea; Schygulla, Johannes. Existence of immersed spheres minimizing curvature functionals in non-compact 3-manifolds. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 4, pp. 707-724. doi: 10.1016/j.anihpc.2013.07.002
Cité par Sources :
