Existence of immersed spheres minimizing curvature functionals in non-compact 3-manifolds
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 4, pp. 707-724

Voir la notice de l'article provenant de la source Numdam

We study curvature functionals for immersed 2-spheres in non-compact, three-dimensional Riemannian manifold (M,h) without boundary. First, under the assumption that (M,h) is the euclidean 3-space endowed with a semi-perturbed metric with perturbation small in C 1 norm and of compact support, we prove that if there is some point x ¯M with scalar curvature R M (x ¯)>0 then there exists a smooth embedding f:𝕊 2 M minimizing the Willmore functional 1 4|H| 2 , where H is the mean curvature. Second, assuming that (M,h) is of bounded geometry (i.e. bounded sectional curvature and strictly positive injectivity radius) and asymptotically euclidean or hyperbolic we prove that if there is some point x ¯M with scalar curvature R M (x ¯)>6 then there exists a smooth immersion f:𝕊 2 M minimizing the functional (1 2|A| 2 +1), where A is the second fundamental form. Finally, adding the bound K M 2 to the last assumptions, we obtain a smooth minimizer f:𝕊 2 M for the functional (1 4|H| 2 +1). The assumptions of the last two theorems are satisfied in a large class of 3-manifolds arising as spacelike timeslices solutions of the Einstein vacuum equation in case of null or negative cosmological constant.

DOI : 10.1016/j.anihpc.2013.07.002
Classification : 53C21, 53C42, 58E99, 35J60
Keywords: $ {L}^{2}$ second fundamental form, Willmore functional, Direct methods in the calculus of variations, Geometric measure theory, General Relativity
@article{AIHPC_2014__31_4_707_0,
     author = {Mondino, Andrea and Schygulla, Johannes},
     title = {Existence of immersed spheres minimizing curvature functionals in non-compact 3-manifolds},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {707--724},
     publisher = {Elsevier},
     volume = {31},
     number = {4},
     year = {2014},
     doi = {10.1016/j.anihpc.2013.07.002},
     mrnumber = {3249810},
     zbl = {1300.53042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.07.002/}
}
TY  - JOUR
AU  - Mondino, Andrea
AU  - Schygulla, Johannes
TI  - Existence of immersed spheres minimizing curvature functionals in non-compact 3-manifolds
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2014
SP  - 707
EP  - 724
VL  - 31
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.07.002/
DO  - 10.1016/j.anihpc.2013.07.002
LA  - en
ID  - AIHPC_2014__31_4_707_0
ER  - 
%0 Journal Article
%A Mondino, Andrea
%A Schygulla, Johannes
%T Existence of immersed spheres minimizing curvature functionals in non-compact 3-manifolds
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 707-724
%V 31
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.07.002/
%R 10.1016/j.anihpc.2013.07.002
%G en
%F AIHPC_2014__31_4_707_0
Mondino, Andrea; Schygulla, Johannes. Existence of immersed spheres minimizing curvature functionals in non-compact 3-manifolds. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 4, pp. 707-724. doi: 10.1016/j.anihpc.2013.07.002

Cité par Sources :