Multiple brake orbits on compact convex symmetric reversible hypersurfaces in
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 3, pp. 531-554
Voir la notice de l'article provenant de la source Numdam
In this paper, we prove that there exist at least geometrically distinct brake orbits on every compact convex symmetric hypersurface Σ in for satisfying the reversible condition with . As a consequence, we show that there exist at least geometrically distinct brake orbits in every bounded convex symmetric domain in with which gives a positive answer to the Seifert conjecture of 1948 in the symmetric case for . As an application, for , we prove that if there are exactly n geometrically distinct closed characteristics on Σ, then all of them are symmetric brake orbits after suitable time translation.
DOI :
10.1016/j.anihpc.2013.03.010
Classification :
58E05, 70H05, 34C25
Keywords: Brake orbit, Maslov-type index, Seifert conjecture, Convex symmetric
Keywords: Brake orbit, Maslov-type index, Seifert conjecture, Convex symmetric
@article{AIHPC_2014__31_3_531_0,
author = {Zhang, Duanzhi and Liu, Chungen},
title = {Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {531--554},
publisher = {Elsevier},
volume = {31},
number = {3},
year = {2014},
doi = {10.1016/j.anihpc.2013.03.010},
zbl = {1300.52006},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.03.010/}
}
TY - JOUR
AU - Zhang, Duanzhi
AU - Liu, Chungen
TI - Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2014
SP - 531
EP - 554
VL - 31
IS - 3
PB - Elsevier
UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.03.010/
DO - 10.1016/j.anihpc.2013.03.010
LA - en
ID - AIHPC_2014__31_3_531_0
ER -
%0 Journal Article
%A Zhang, Duanzhi
%A Liu, Chungen
%T Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 531-554
%V 31
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.03.010/
%R 10.1016/j.anihpc.2013.03.010
%G en
%F AIHPC_2014__31_3_531_0
Zhang, Duanzhi; Liu, Chungen. Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 3, pp. 531-554. doi: 10.1016/j.anihpc.2013.03.010
Cité par Sources :