Multiple brake orbits on compact convex symmetric reversible hypersurfaces in 𝐑 2n
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 3, pp. 531-554

Voir la notice de l'article provenant de la source Numdam

In this paper, we prove that there exist at least [n+1 2]+1 geometrically distinct brake orbits on every C 2 compact convex symmetric hypersurface Σ in 𝐑 2n for n2 satisfying the reversible condition NΣ=Σ with N= diag (-I n ,I n ). As a consequence, we show that there exist at least [n+1 2]+1 geometrically distinct brake orbits in every bounded convex symmetric domain in 𝐑 n with n2 which gives a positive answer to the Seifert conjecture of 1948 in the symmetric case for n=3. As an application, for n=4and5, we prove that if there are exactly n geometrically distinct closed characteristics on Σ, then all of them are symmetric brake orbits after suitable time translation.

DOI : 10.1016/j.anihpc.2013.03.010
Classification : 58E05, 70H05, 34C25
Keywords: Brake orbit, Maslov-type index, Seifert conjecture, Convex symmetric
@article{AIHPC_2014__31_3_531_0,
     author = {Zhang, Duanzhi and Liu, Chungen},
     title = {Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {531--554},
     publisher = {Elsevier},
     volume = {31},
     number = {3},
     year = {2014},
     doi = {10.1016/j.anihpc.2013.03.010},
     zbl = {1300.52006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.03.010/}
}
TY  - JOUR
AU  - Zhang, Duanzhi
AU  - Liu, Chungen
TI  - Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2014
SP  - 531
EP  - 554
VL  - 31
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.03.010/
DO  - 10.1016/j.anihpc.2013.03.010
LA  - en
ID  - AIHPC_2014__31_3_531_0
ER  - 
%0 Journal Article
%A Zhang, Duanzhi
%A Liu, Chungen
%T Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 531-554
%V 31
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.03.010/
%R 10.1016/j.anihpc.2013.03.010
%G en
%F AIHPC_2014__31_3_531_0
Zhang, Duanzhi; Liu, Chungen. Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 3, pp. 531-554. doi: 10.1016/j.anihpc.2013.03.010

Cité par Sources :