Standing waves for linearly coupled Schrödinger equations with critical exponent
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 3, pp. 429-447

Voir la notice de l'article provenant de la source Numdam

We study the following linearly coupled Schrödinger equations:

{-ϵ 2 Δu+a(x)u=u p +λv,x N ,-ϵ 2 Δv+b(x)v=v 2 -1 +λu,x N ,u,v>0in N ,u(x),v(x)0as|x|,
where N3, 2 =2N N-2, 1<p<2 -1, and a(x),b(x) are positive continuous potentials which are both bounded away from 0. Under some assumptions on a(x) and λ>0, we obtain positive solutions of the coupled system for sufficiently small ϵ>0, which have concentration phenomenon as ϵ0. It is interesting that we do not need any further assumptions on b(x).

@article{AIHPC_2014__31_3_429_0,
     author = {Chen, Zhijie and Zou, Wenming},
     title = {Standing waves for linearly coupled {Schr\"odinger} equations with critical exponent},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {429--447},
     publisher = {Elsevier},
     volume = {31},
     number = {3},
     year = {2014},
     doi = {10.1016/j.anihpc.2013.04.003},
     zbl = {1300.35029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.04.003/}
}
TY  - JOUR
AU  - Chen, Zhijie
AU  - Zou, Wenming
TI  - Standing waves for linearly coupled Schrödinger equations with critical exponent
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2014
SP  - 429
EP  - 447
VL  - 31
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.04.003/
DO  - 10.1016/j.anihpc.2013.04.003
LA  - en
ID  - AIHPC_2014__31_3_429_0
ER  - 
%0 Journal Article
%A Chen, Zhijie
%A Zou, Wenming
%T Standing waves for linearly coupled Schrödinger equations with critical exponent
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 429-447
%V 31
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.04.003/
%R 10.1016/j.anihpc.2013.04.003
%G en
%F AIHPC_2014__31_3_429_0
Chen, Zhijie; Zou, Wenming. Standing waves for linearly coupled Schrödinger equations with critical exponent. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 3, pp. 429-447. doi: 10.1016/j.anihpc.2013.04.003

Cité par Sources :