A uniqueness result for the quasiconvex operator and first order PDEs for convex envelopes
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 2, pp. 203-215
Voir la notice de l'article provenant de la source Numdam
The operator involved in quasiconvex functions is and this also arises as the governing operator in a worst case tug-of-war (Kohn and Serfaty (2006) [7]) and principal curvature of a surface. In Barron et al. (2012) [4] a comparison principle for was proved. A new and much simpler proof is presented in this paper based on Barles and Busca (2001) [3] and Lu and Wang (2008) [8]. Since is the minimal principal curvature of a surface, we show by example that does not have a unique solution, even if . Finally, we complete the identification of first order evolution problems giving the convex envelope of a given function.
DOI :
10.1016/j.anihpc.2013.02.006
Classification :
35D40, 52A41
Keywords: Quasiconvex, Principal curvature, Convex envelope
Keywords: Quasiconvex, Principal curvature, Convex envelope
@article{AIHPC_2014__31_2_203_0,
author = {Barron, E.N. and Jensen, R.R.},
title = {A uniqueness result for the quasiconvex operator and first order {PDEs} for convex envelopes},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {203--215},
publisher = {Elsevier},
volume = {31},
number = {2},
year = {2014},
doi = {10.1016/j.anihpc.2013.02.006},
mrnumber = {3181665},
zbl = {1302.35104},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.02.006/}
}
TY - JOUR AU - Barron, E.N. AU - Jensen, R.R. TI - A uniqueness result for the quasiconvex operator and first order PDEs for convex envelopes JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 203 EP - 215 VL - 31 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.02.006/ DO - 10.1016/j.anihpc.2013.02.006 LA - en ID - AIHPC_2014__31_2_203_0 ER -
%0 Journal Article %A Barron, E.N. %A Jensen, R.R. %T A uniqueness result for the quasiconvex operator and first order PDEs for convex envelopes %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 203-215 %V 31 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.02.006/ %R 10.1016/j.anihpc.2013.02.006 %G en %F AIHPC_2014__31_2_203_0
Barron, E.N.; Jensen, R.R. A uniqueness result for the quasiconvex operator and first order PDEs for convex envelopes. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 2, pp. 203-215. doi: 10.1016/j.anihpc.2013.02.006
Cité par Sources :