Counterexample to regularity in average-distance problem
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 1, pp. 169-184
Voir la notice de l'article provenant de la source Numdam
The average-distance problem is to find the best way to approximate (or represent) a given measure μ on by a one-dimensional object. In the penalized form the problem can be stated as follows: given a finite, compactly supported, positive Borel measure μ, minimize
DOI :
10.1016/j.anihpc.2013.02.004
Classification :
49Q20, 49K10, 49Q10, 05C05, 35B65
Keywords: Average-distance problem, Nonlocal variational problem, Regularity
Keywords: Average-distance problem, Nonlocal variational problem, Regularity
@article{AIHPC_2014__31_1_169_0,
author = {Slep\v{c}ev, Dejan},
title = {Counterexample to regularity in average-distance problem},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {169--184},
publisher = {Elsevier},
volume = {31},
number = {1},
year = {2014},
doi = {10.1016/j.anihpc.2013.02.004},
mrnumber = {3165284},
zbl = {1286.49055},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.02.004/}
}
TY - JOUR AU - Slepčev, Dejan TI - Counterexample to regularity in average-distance problem JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 169 EP - 184 VL - 31 IS - 1 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.02.004/ DO - 10.1016/j.anihpc.2013.02.004 LA - en ID - AIHPC_2014__31_1_169_0 ER -
%0 Journal Article %A Slepčev, Dejan %T Counterexample to regularity in average-distance problem %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 169-184 %V 31 %N 1 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.02.004/ %R 10.1016/j.anihpc.2013.02.004 %G en %F AIHPC_2014__31_1_169_0
Slepčev, Dejan. Counterexample to regularity in average-distance problem. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 1, pp. 169-184. doi: 10.1016/j.anihpc.2013.02.004
Cité par Sources :