Counterexample to regularity in average-distance problem
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 1, pp. 169-184

Voir la notice de l'article provenant de la source Numdam

The average-distance problem is to find the best way to approximate (or represent) a given measure μ on d by a one-dimensional object. In the penalized form the problem can be stated as follows: given a finite, compactly supported, positive Borel measure μ, minimize

E(Σ)= d d(x,Σ)dμ(x)+λ 1 (Σ)
among connected closed sets, Σ, where λ>0, d(x,Σ) is the distance from x to the set Σ, and 1 is the one-dimensional Hausdorff measure. Here we provide, for any d2, an example of a measure μ with smooth density, and convex, compact support, such that the global minimizer of the functional is a rectifiable curve which is not C 1 . We also provide a similar example for the constrained form of the average-distance problem.

DOI : 10.1016/j.anihpc.2013.02.004
Classification : 49Q20, 49K10, 49Q10, 05C05, 35B65
Keywords: Average-distance problem, Nonlocal variational problem, Regularity
@article{AIHPC_2014__31_1_169_0,
     author = {Slep\v{c}ev, Dejan},
     title = {Counterexample to regularity in average-distance problem},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {169--184},
     publisher = {Elsevier},
     volume = {31},
     number = {1},
     year = {2014},
     doi = {10.1016/j.anihpc.2013.02.004},
     mrnumber = {3165284},
     zbl = {1286.49055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.02.004/}
}
TY  - JOUR
AU  - Slepčev, Dejan
TI  - Counterexample to regularity in average-distance problem
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2014
SP  - 169
EP  - 184
VL  - 31
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.02.004/
DO  - 10.1016/j.anihpc.2013.02.004
LA  - en
ID  - AIHPC_2014__31_1_169_0
ER  - 
%0 Journal Article
%A Slepčev, Dejan
%T Counterexample to regularity in average-distance problem
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 169-184
%V 31
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2013.02.004/
%R 10.1016/j.anihpc.2013.02.004
%G en
%F AIHPC_2014__31_1_169_0
Slepčev, Dejan. Counterexample to regularity in average-distance problem. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 1, pp. 169-184. doi: 10.1016/j.anihpc.2013.02.004

Cité par Sources :