Linearly repetitive Delone sets are rectifiable
Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 2, pp. 275-290

Voir la notice de l'article provenant de la source Numdam

We show that every linearly repetitive Delone set in the Euclidean d-space d , with d2, is equivalent, up to a bi-Lipschitz homeomorphism, to the integer lattice d . In the particular case when the Delone set X in d comes from a primitive substitution tiling of d , we give a condition on the eigenvalues of the substitution matrix which ensures the existence of a homeomorphism with bounded displacement from X to the lattice β d for some positive β. This condition includes primitive Pisot substitution tilings but also concerns a much broader set of substitution tilings.

@article{AIHPC_2013__30_2_275_0,
     author = {Aliste-Prieto, Jos\'e and Coronel, Daniel and Gambaudo, Jean-Marc},
     title = {Linearly repetitive {Delone} sets are rectifiable},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {275--290},
     publisher = {Elsevier},
     volume = {30},
     number = {2},
     year = {2013},
     doi = {10.1016/j.anihpc.2012.07.006},
     mrnumber = {3035977},
     zbl = {1288.52011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.07.006/}
}
TY  - JOUR
AU  - Aliste-Prieto, José
AU  - Coronel, Daniel
AU  - Gambaudo, Jean-Marc
TI  - Linearly repetitive Delone sets are rectifiable
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2013
SP  - 275
EP  - 290
VL  - 30
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.07.006/
DO  - 10.1016/j.anihpc.2012.07.006
LA  - en
ID  - AIHPC_2013__30_2_275_0
ER  - 
%0 Journal Article
%A Aliste-Prieto, José
%A Coronel, Daniel
%A Gambaudo, Jean-Marc
%T Linearly repetitive Delone sets are rectifiable
%J Annales de l'I.H.P. Analyse non linéaire
%D 2013
%P 275-290
%V 30
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.07.006/
%R 10.1016/j.anihpc.2012.07.006
%G en
%F AIHPC_2013__30_2_275_0
Aliste-Prieto, José; Coronel, Daniel; Gambaudo, Jean-Marc. Linearly repetitive Delone sets are rectifiable. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 2, pp. 275-290. doi: 10.1016/j.anihpc.2012.07.006

Cité par Sources :