Linearly repetitive Delone sets are rectifiable
Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 2, pp. 275-290
Voir la notice de l'article provenant de la source Numdam
We show that every linearly repetitive Delone set in the Euclidean d-space , with , is equivalent, up to a bi-Lipschitz homeomorphism, to the integer lattice . In the particular case when the Delone set X in comes from a primitive substitution tiling of , we give a condition on the eigenvalues of the substitution matrix which ensures the existence of a homeomorphism with bounded displacement from X to the lattice for some positive β. This condition includes primitive Pisot substitution tilings but also concerns a much broader set of substitution tilings.
@article{AIHPC_2013__30_2_275_0, author = {Aliste-Prieto, Jos\'e and Coronel, Daniel and Gambaudo, Jean-Marc}, title = {Linearly repetitive {Delone} sets are rectifiable}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {275--290}, publisher = {Elsevier}, volume = {30}, number = {2}, year = {2013}, doi = {10.1016/j.anihpc.2012.07.006}, mrnumber = {3035977}, zbl = {1288.52011}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.07.006/} }
TY - JOUR AU - Aliste-Prieto, José AU - Coronel, Daniel AU - Gambaudo, Jean-Marc TI - Linearly repetitive Delone sets are rectifiable JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 275 EP - 290 VL - 30 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.07.006/ DO - 10.1016/j.anihpc.2012.07.006 LA - en ID - AIHPC_2013__30_2_275_0 ER -
%0 Journal Article %A Aliste-Prieto, José %A Coronel, Daniel %A Gambaudo, Jean-Marc %T Linearly repetitive Delone sets are rectifiable %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 275-290 %V 30 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.07.006/ %R 10.1016/j.anihpc.2012.07.006 %G en %F AIHPC_2013__30_2_275_0
Aliste-Prieto, José; Coronel, Daniel; Gambaudo, Jean-Marc. Linearly repetitive Delone sets are rectifiable. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 2, pp. 275-290. doi: 10.1016/j.anihpc.2012.07.006
Cité par Sources :