Energy and local energy bounds for the 1-d cubic NLS equation in H -1 4
Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 6, pp. 955-988

Voir la notice de l'article provenant de la source Numdam

We consider the cubic nonlinear Schrödinger equation (NLS) in one space dimension, either focusing or defocusing. We prove that the solutions satisfy a priori local in time H s bounds in terms of the H s size of the initial data for s-1 4. This improves earlier results of Christ, Colliander and Tao [3] and of the authors (Koch and Tataru, 2007 [13]). The new ingredients are a localization in space and local energy decay, which we hope to be of independent interest.

@article{AIHPC_2012__29_6_955_0,
     author = {Koch, Herbert and Tataru, Daniel},
     title = {Energy and local energy bounds for the 1-d cubic {NLS} equation in $ {H}^{-\frac{1}{4}}$},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {955--988},
     publisher = {Elsevier},
     volume = {29},
     number = {6},
     year = {2012},
     doi = {10.1016/j.anihpc.2012.05.006},
     zbl = {1280.35137},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.05.006/}
}
TY  - JOUR
AU  - Koch, Herbert
AU  - Tataru, Daniel
TI  - Energy and local energy bounds for the 1-d cubic NLS equation in $ {H}^{-\frac{1}{4}}$
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2012
SP  - 955
EP  - 988
VL  - 29
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.05.006/
DO  - 10.1016/j.anihpc.2012.05.006
LA  - en
ID  - AIHPC_2012__29_6_955_0
ER  - 
%0 Journal Article
%A Koch, Herbert
%A Tataru, Daniel
%T Energy and local energy bounds for the 1-d cubic NLS equation in $ {H}^{-\frac{1}{4}}$
%J Annales de l'I.H.P. Analyse non linéaire
%D 2012
%P 955-988
%V 29
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2012.05.006/
%R 10.1016/j.anihpc.2012.05.006
%G en
%F AIHPC_2012__29_6_955_0
Koch, Herbert; Tataru, Daniel. Energy and local energy bounds for the 1-d cubic NLS equation in $ {H}^{-\frac{1}{4}}$. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 6, pp. 955-988. doi: 10.1016/j.anihpc.2012.05.006

Cité par Sources :